
More SQL

CS157A
Chris Pollett

Oct. 17, 2005.

Outline

• Specifying Key and Referential Integrity
Constraints

• Naming Constraints
• Drop, Alter
• Basic Queries in SQL

Specifying Key Constraints

• We have already seen we can indicate a primary
key in a create table statement using the syntax:
PRIMARY KEY(COL1, COL2,…)

• If one has a single attribute key one can mark it
so, when one declares the column type. For
instance,
DNUMBER INT PRIMARY KEY,

• If one wants to indicate secondary keys, one can
use the syntax UNIQUE(COL1, COL2, …)

 Referential Integrity Constraints
• Consider the following line from a create table statement which specifies a

foreign key constraint:
FOREIGN KEY (DNUMBER) REFERENCES

DEPARTMENT(DNUMBER), ON DELETE CASCADE ON UPDATE
CASCADE

• ON DELETE and ON UPDATE are used to specify referential triggered
actions.

• If ON DELETE and ON UPDATE had not been specified then by default
deleting a DEPARTMENT DNUMBER which is referenced by the above
would result in the operation being rejected.

• With ON DELETE CASCADE, we are saying if a DEPARTMENT
DNUMBER is deleted then anything in this table that references it should be
deleted.

• With ON UPDATE CASCADE, we are saying if a DEPARTMENT
DNUMBER is changed then relevant rows in this table should be changed to
the new DNUMBER.

• Besides CASCADE, one could also use other actions such as SET
NULL or SET DEFAULT.

Naming Constraints

• If one ever has to change ones table, it is useful to
have a name for ones constraints.

• That way, one can easily modify or drop the
constraint if one has to.

• An example of naming a constraint would be the
following code fragment:

• CONSTRAINT DEPTPK PRIMARY
KEY(DNUMBER)

• DEPTPK can now be used to refer to this
constraint.

Drop
• The DROP command can be used to drop schemas

as well as named schema elements, such as tables,
domains, or constraints.

• Here are some examples:
DROP SCHEMA COMPANY;
DROP SCHEMA COMPANY RESTRICT;
DROP TABLE DEPENDENT;
DROP TABLE DEPENDENT CASCADE;

• RESTRICT prevents the operation unless all the
things that are in COMPANY have been deleted.

• CASCADE drops any constraints that reference
the table as well.

Alter

• To change the definition of a table one uses the
alter command:
ALTER TABLE COMPANY.EMPLOYEE ADD JOB

VARCHAR(12); /* add a column job */
ALTER TABLE COMPANY.EMPLOYEE ALTER JOB

SET DEFAULT ‘GRADING’; /* alter job */
ALTER TABLE COMPANY.EMPLOYEE DROP JOB

CASCADE; /* drop job */
ALTER TABLE DEPARTMENT DROP CONSTRAINT

DEPTPK; /* drop a constraint notice this time we are
assuming DEPARTMENT is in the current schema */

Basic Queries in SQL

• The basic format of a query in SQL is
SELECT <attribute list> -- this line is like a projection
FROM <table list> -- this line is like a cartesian product
WHERE <condition>; -- this line is like a selection

• For example, to do the query:
– Retrieve the birthdate and address of the employee(s)

whose name is ‘John B. Smith’.
– One could do:

SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME=‘John’ AND MINIT=‘B’ AND

LNAME=‘Smith’;

Some More Examples
• Retrieve the name and address of all employees who work for the

‘research’ department.
SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME=‘Research’ and DNUMBER=DNO;

• For every project located in ‘Stafford’ list the project number, the
controlling department numbers, and the department manager’s last
name, address, and birthdate.
SELECT PNUMBER, DNUM, LNAME, ADDRESS,

BDATE
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN and

PLOCATION=‘Stafford’;

Ambiguous Attribute Names,
Aliasing, and Tuple Variables

• What do you do if you have two tables with the column A?
SELECT T1.A, T2.A
FROM T1, T2;

• How do you join a table with itself? For instance, suppose for each
employee, you want to retrieve the employee first and last name and
his manager’s first and last name.
SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN= S.SSN;

• E and S are called aliases or tuple variables.
• It is also possible to create aliases for both tables and columns:

EMPLOYEE AS E(FN, MI, LN, SSN, BD, ADDR, SEX,
SAL, SSSN, DNO)

Unspecified WHERE clause and
Use of the Asterisk

• If a WHERE clause is not specified then it
indicates that no condition needs to hold on the
tuples, so any tuples in the from clause will work.

• For instance, SELECT SSN,DNAME FROM
EMPLOYEE, DEPARTMENT; returns all
combinations of SSN from EMPLOYEE and
DNAME from department.

• If we want to return all columns that could result
from a query we use a * in the select line:
SELECT * FROM EMPLOYEE WHERE DNO=5;
SELECT * FROM EMPLOYEE, DEPARTMENT;

/* this last is like a cartesian product */

Tables as Sets in SQL
• Usually SQL treats query results as multisets.
• So SELECT SALARY FROM EMPLOYEE; might return several identical

salaries. Note: to emphasize we want a multiset we can write: SELECT ALL
SALARY FROM EMPLOYEE;

• If one wants the result as a set one can use the keyword distinct; SELECT
DISTINCT SALARY FROM EMPLOYEE;

• SQL also supports set union (UNION), set difference (EXCEPT), and set
intersection (INTERSECT). For example,
(SELECT DISTINCT SALARY FROM EMPLOYEE WHERE DNO=4)
UNION
 (SELECT DISTINCT SALARY FROM EMPLOYEE WHERE DNO=6)

• There are also multiset analogs of these operations UNION ALL, EXCEPT
ALL, and INTERSECT ALL.

Substring Pattern Matching and
Arithmetic Operators

• Pattern matching in SQL can be done using the
keyword LIKE. The symbol % is used to replaces
zero or more characters and _ is used to match any
one character. For example,
SELECT FNAME, LNAME FROM EMPLOYEE

WHERE ADDRESS LIKE ‘%Ho_ston, TX%’;
• Arithmetical operators can be applied to the

outputs of a query:
SELECT FNAME, LNAME, 1.1*SALARY AS

INCREASED_SAL FROM EMPLOYEE;

BETWEEN and ORDER BY

• BETWEEN is a useful keyword for specifying a
domain in a where clause:
SELECT * FROM EMPLOYEE WHERE (SALARY

BETWEEN 50000 AND 60000);
• Another useful operation to do is to be able to sort

and order the results of a query. An SQL ORDER
BY clause is used to do this:
SELECT LNAME, FNAME, BDATE FROM

EMPLOYEE ORDER BY LNAME DESC, FNAME
DESC, BDATE ASC;

– If don’t say ascending or descending then by default
ascending.

