More Functional Dependencies
and Normalization

CS157A
Chris Pollett
Nov. 16, 2005.



Last Day

 We talked about some informal design criteria
we’d like our relation schemas to satisty:
— easy to explain meaning
— no anomalies
— minimize nulls

— no spurious tuples

e Then talked about function dependencies (FDs)
and Armstrong’s axioms.



Today’s Outline

Closure of a set of attributes
FED Covers
Minimal Covers

Normal Forms



Closure of a Set of Attributes

e |n order to define our normal forms, we need to be
able to define the closure of a set of attributes
under a set of FDs.

e Definition: Let X* denote all those attributes
which functionally depend on X.

* Here’s an algorithm to compute X* from X and F:
initialize X+ := X
repeat
old X*:= X*;

for each FD, Y-->Z, in F do
if X* 2Y then X+ :=X*U Z;

until X* = old X*;



Covers

e Definition: A set of FDs F 1s said to cover
another set of FDs E if every FD 1n E 1s in
F*. Two FDs F and E are equivalent if they
cover each other.

* One can check if F covers E by looking at
each FD X-->Y in E and checking whether
X* calculated according to F contains Y.



Minimal Covers

Intuitively, a minimal cover of a set of functional dependencies F is a
smallest subset of F* which covers F.

We also would like to have a nice form for our minimal covers.
So we say a set of FDs is minimal if:
— Every FD in F has a single attribute on its right hand side.

— We cannot replace an X-->A in F by Y-->A where Y is strictly
contained in X and get an equivalent set of dependencies

— We cannot remove any dependency from F and get an equivalent
set of FDs.

A minimal cover for FDs E is a set F of FDs
which covers E and 1s minimal.



Minimal Cover Algorithm

INPUT: A set E of FDs

OUTPUT: A set F of FDs so that F is a minimal cover of E.

Algorithm:

Set F:=E

Replace each FD X-->{A,,...A_} in F by the n FDs X-->A,..., X-->A_.

For each FD X-->A in F, for each attribute B in X
if {{F-{X-->A} U{(X-{B})-->A}} is equivalent to F then replace X--
>A by (X-{B})-->A in F.

For each remaining FD X-->A in F if {F-{X-->A}} is equivalent to F
remove X-->A from F.



Normalization of Relations

We now consider some normal forms for our tables which will allow
us to judge if we’ve split our attributes among tables reasonably.

We give algorithms both for checking normal forms as well as for
putting tables into normal forms.

The latter process is called normalization.

Sometimes for efficiency of queries, etc we might later choose weaker
normal forms over stronger ones and do the reverse process known as
denormalization.

We need one last definition first. Call an attribute of a relation schema
R prime if it 1s a member of some candidate key of R. If an attribute is
not prime call it nonprime.



First Normal Form (1NF)

e This normal form has actually been
incorporated into the definition of the
relational model.

e It says that the domain of an attribute must
include only atomic (simple, indivisible)
values.

e Hence, 1NF disallows multivalued
attributes.



Second Normal Form (2NF)

e A functional dependency X-->Y is a full
functional dependency if removal of any
attribute A from X means that the
dependency doesn’t hold any more.

e A relation schema R 1s in 2NF if every
nonprime attribute A in R 1s fully

functionally dependent on the primary key
of R.



2NF Example

Consider:

EMP_PROIJ(SSN, PNUMBER, HOURS, ENAME, PNAME,
PLOCATION)

Suppose our FDs are:
SSN, PNUMBER--> HOURS
SSN --> ENAME
PNUMBER --> PNAME, PLOCATION.

Then this is not in 2NF as ENAME for instance only depends on SSN
and not both SSN and PNUMBER.

Not being in 2NF suggests redundancy in the data.

To normalize this table we could split it into:

EMP(SSN, ENAME), WORKS(SSN, PNUMBER, HOURS),
PROJ(PNUMBER, PNAME, PLOCATION)



Third Normal Form

e An FD X-->Y is called a transitive
dependency if there 1s a Z that 1s neither a
candidate key nor a subset of a key in R

such that X-->7 and Z-->Y both hold on R.

e A relation is in 3NF 1f 1t 1s in 2NF and no
nonprime attribute of R 1s transitively
dependent on the primary key.



3NF Example

Consider:

EMP_DEPT(ENAME, SSN, BDATE, ADDRESS,
DNUMBER, DNAME, DMGRSSN)
Suppose our FDs are:

SSN --> ENAME, BDATE, ADDRESS, DNUMBER
DNUMBER --> DNAME, DMGRSSN.

In this case DNAME is a nonprime attribute which depends
transitively on SSN through DNUMBER.

Anomalies can occur if not in 3NF.

To put this in 3NF we could split it into the tables
EMP(ENAME, SSN, BDATE, ADDRESS)
DEPT(DNUMBER, DNAME, DMGRSSN)



