
More Functional Dependencies
and Normalization

CS157A
Chris Pollett

Nov. 16, 2005.

Last Day

• We talked about some informal design criteria
we’d like our relation schemas to satisfy:
– easy to explain meaning
– no anomalies
– minimize nulls
– no spurious tuples

• Then talked about function dependencies (FDs)
and Armstrong’s axioms.

Today’s Outline

• Closure of a set of attributes
• FD Covers
• Minimal Covers
• Normal Forms

Closure of a Set of Attributes

• In order to define our normal forms, we need to be
able to define the closure of a set of attributes
under a set of FDs.

• Definition: Let X+ denote all those attributes
which functionally depend on X.

• Here’s an algorithm to compute X+ from X and F:
initialize X+ := X;
repeat

old X+ := X+;
for each FD, Y--> Z, in F do

if X+ ⊇ Y then X+ := X+ ∪ Z;

until X+ = old X+ ;

Covers

• Definition: A set of FDs F is said to cover
another set of FDs E if every FD in E is in
F+. Two FDs F and E are equivalent if they
cover each other.

• One can check if F covers E by looking at
each FD X-->Y in E and checking whether
X+ calculated according to F contains Y.

Minimal Covers
• Intuitively, a minimal cover of a set of functional dependencies F is a

smallest subset of F+ which covers F.
• We also would like to have a nice form for our minimal covers.
• So we say a set of FDs is minimal if:

– Every FD in F has a single attribute on its right hand side.
– We cannot replace an X-->A in F by Y-->A where Y is strictly

contained in X and get an equivalent set of dependencies
– We cannot remove any dependency from F and get an equivalent

set of FDs.

• A minimal cover for FDs E is a set F of FDs
which covers E and is minimal.

Minimal Cover Algorithm
INPUT: A set E of FDs
OUTPUT: A set F of FDs so that F is a minimal cover of E.
Algorithm:
Set F := E
Replace each FD X-->{A1,…An} in F by the n FDs X-->A1,…, X-->An.
For each FD X-->A in F, for each attribute B in X

if {{F-{X-->A} ∪{(X-{B})-->A}} is equivalent to F then replace X--
>A by (X-{B})-->A in F.

For each remaining FD X-->A in F if {F-{X-->A}} is equivalent to F
remove X-->A from F.

Normalization of Relations
• We now consider some normal forms for our tables which will allow

us to judge if we’ve split our attributes among tables reasonably.
• We give algorithms both for checking normal forms as well as for

putting tables into normal forms.
• The latter process is called normalization.
• Sometimes for efficiency of queries, etc we might later choose weaker

normal forms over stronger ones and do the reverse process known as
denormalization.

• We need one last definition first. Call an attribute of a relation schema
R prime if it is a member of some candidate key of R. If an attribute is
not prime call it nonprime.

First Normal Form (1NF)

• This normal form has actually been
incorporated into the definition of the
relational model.

• It says that the domain of an attribute must
include only atomic (simple, indivisible)
values.

• Hence, 1NF disallows multivalued
attributes.

Second Normal Form (2NF)

• A functional dependency X-->Y is a full
functional dependency if removal of any
attribute A from X means that the
dependency doesn’t hold any more.

• A relation schema R is in 2NF if every
nonprime attribute A in R is fully
functionally dependent on the primary key
of R.

2NF Example
• Consider:

EMP_PROJ(SSN, PNUMBER, HOURS, ENAME, PNAME,
PLOCATION)

• Suppose our FDs are:
SSN, PNUMBER--> HOURS
SSN --> ENAME
PNUMBER --> PNAME, PLOCATION.

• Then this is not in 2NF as ENAME for instance only depends on SSN
and not both SSN and PNUMBER.

• Not being in 2NF suggests redundancy in the data.
• To normalize this table we could split it into:

EMP(SSN, ENAME), WORKS(SSN, PNUMBER, HOURS),
PROJ(PNUMBER, PNAME, PLOCATION)

Third Normal Form

• An FD X-->Y is called a transitive
dependency if there is a Z that is neither a
candidate key nor a subset of a key in R
such that X-->Z and Z-->Y both hold on R.

• A relation is in 3NF if it is in 2NF and no
nonprime attribute of R is transitively
dependent on the primary key.

3NF Example

• Consider:
EMP_DEPT(ENAME, SSN, BDATE, ADDRESS,

DNUMBER, DNAME, DMGRSSN)
• Suppose our FDs are:

SSN --> ENAME, BDATE, ADDRESS, DNUMBER
DNUMBER --> DNAME, DMGRSSN.

• In this case DNAME is a nonprime attribute which depends
transitively on SSN through DNUMBER.

• Anomalies can occur if not in 3NF.
• To put this in 3NF we could split it into the tables

EMP(ENAME, SSN, BDATE, ADDRESS)
DEPT(DNUMBER, DNAME, DMGRSSN)

