Functional Dependencies and
Normalization

CS157A
Chris Pollett
Nov. 14, 2005.



Outline

e Informal Design Guidelines for Relation
Schemas

e Functional Dependencies



Introduction

 To this point we’ve heuristically learned how to
come up with a choice of relation schemas for a
database based on ER modeling.

 There are informally two levels at which we can
judge the resulting tables:

(1) The logical level --do the tables make sense to DB
users.

(2) The implementation level -- are the tables physically
stored with indexes, etc appropriate for their typical
use.

 Today, we will be interested in formal
approaches to saying if our schemas are good.



Schema quality: What should we

optimize’?

Semantics of attributes

Reducing the number of redundant values in
tuples

Reducing the null values 1n tuples

Disallowing the possibility of generating
spurious tuples.



Semantics of the Relation
Attributes

We should be grouping our attributes into relations so that they have
some real-world meaning.

This meaning (aka semantics) tells us how to interpret the attributes
values stored in some tuple.

For instance, a BDate value in a tuple in the EMPLOYEE table should
be interpreted as someones birthday.

The ease with which we can explain each attribute in a table is an
informal measure of how well the relation is designed.

So a first guideline on relation schema design is to make sure that each
schema has some easy to explain meaning. One should not combine
attributes from multiple entity types and relationship types into a single
relation.



Redundant Information

Another goal in relation schema design is to reduce the storage space
used by the base relations.

As an example, suppose we combined the attributes of EMPLOYEE
and DEPARTMENT into one table EMP_DEPT(EName, SSN, BDate,
Address, DNumber, DName, DMGRSSN)

Then the same values for DNumber, DName, DMGRSSN are repeated
for each employee who works for a given department.

This could be minimized if used DNumber as a foreign key reference
to a different DEPARTMENT table.

Further, such a table is prone to several kinds of update anomalies
which we’ll discuss on the next slide.



Update Anomalies

e Insertion Anomalies -- to inset into EMP_DEPT a new employee
involves padding a tuple with nulls until that employee is assigned a
department. Need to also check that for each row insert the values are

consistent with a given department. It is unclear how one would insert
a new department at all as SSN is the key for EMP_DEPT.

e Deletion Anomalies -- deleting the last employee who works for a
department deletes the department.

 Modification Anomalies - changing the manager of a department
involves changing many rows.

Thus, another design guideline should be to design
tables so that Insertion, Deletion, and Modification
anomalies are not possible.



Null Values in Tuples

As we’ve said before null values can have several interpretations:
— The attribute does not apply
— The attribute value for this tuple is unknown
— The value is known but absent; that is, it has not been recorded yet.

Therefore, it is good to have another guideline which says as far as
possible avoid placing attributes in a base relation whose values
frequently be null.

As an example, if only 10% of employees have offices rather than add
an office number attribute to employee make a separate table
EMP_OFFICES(ESSN, OfficeNo).



Generation of Spurious Tuples

Consider the tables

— EMP_LOCS(EName, PLocation)

— EMP_PROJ1(SSN, PNumber, Hours, PName, PLocation)
versus the table

— EMP_PROIJ(SSN, PNumber, Hours, EName, PName, PLocation)

If we use the former as our base tables then we cannot recover all the
information of the latter because trying to natural join the two tables
will produce many rows not in EMP_PROJ.

These extra rows are called spurious tuples.

Another design guideline is that relation schemas should be designed
so that they can be joined with equality conditions on attributes that are
either primary keys or foreign keys in a way such that no spurious
tuples are generated.




Functional Dependencies

We now try to come up with formal ways to
ensure some of the guidelines we’ve listed above.

Definition: A functional dependency

X-->Y, between two sets of attributes of some schema R

indicates that whenever s,t are tuples in R it holds that
s[X]=t[X] implies s[Y] = t[Y].

We abbreviate functional dependency as FD.
If X-->Y we say Y is functionally dependent of X.

It X 1s a superkey of R then X-->Y for any subset
of attributes Y of R.



Inference and Functional
Dependencies

Let F denote some set of functional dependencies
that hold on some schema.

Some FDs are obvious and can be specified by the
DB designer.

Often other dependencies can be inferred from
these dependencies.

For example 1f A-->B and B-->C then we can
infer A-->C.

Definition: The closure of F, denoted F*, consists
of all the FDs in F together with all FDs which can
be inferred from F.



Rules for Inferring FDs

IR1 (reflexive rule): If X DY, then X — Y.

[R2 (augmentation rule): {X - Y} =XZ ->YZ

[R3 (transitive rule): {X - Y)Y - Z} =X —- Z

IR4 (decomposition rule): {X - YZ} =X —Y

[R5 (union rule): {X =Y, X -2} =X —->YZ

IR6 (pseudotransitive rule): {X - YWY - Z} WX — Z
IR1-3 imply IR4-6.

IR1-3 are called Armstrong’s inference rules.

They can be shown to be complete in that any inferable FD in F*
can be derived from F and these rules.



