
More Relational Algebra and the
Relational Calculus

CS157A
Chris Pollett
Oct. 5, 2005.

Outline

• Complete sets of operators
• Division
• Aggregation and Grouping
• Outer Joins and Unions
• Tuple Relational Calculus
• Domain Relational Calculus

Complete sets of operators

• One can show that is a complete set.
That is, all the other relational algebra operations
we have defined can be defined using just these
operations.

• These operations will turn out to be what you can
do in the relational calculus.

• Already, we have seen join can be expressed using
selection and product.

• Set difference can be expressed as:

Division

• The division operator is useful for expressing the
following kind of query: Retrieve the names of
employee who work on all projects that John
Smith works on:

• With a little work one can show division can be
expressed in term of projection, cartesian product,
and difference.

Aggregation and Grouping

• There are some useful operations which cannot be
defined in terms of the basic operations of the
relation algebra. For instance: counts, averages.
There are other which are awkward to express like
minimums, and maximums.

• These are collectively called aggregate functions.
• Another useful kind of operation is to be able to

group counts, averages, etc by some attribute. For
instance, average salaries in each department.

• The general notation for both these kinds of ops is:

Recursive Closure Operations

• The relational algebra does not support transitive
closures of relations.

• So for instance, given a relation Parent(x,y), it is
possible to define a query that might return the
grandparents of Bob. Or even great-grandparents
of Bob.

• But there is no single query that will return all
ancestors of Bob.

• SQL3 proposes a syntax for such transitive
closures in SQL.

Outer Joins

• In R*S, only tuples in R which have matching
tuples in S are kept.

• One could imagine wanting to keep all tuples in R
in the output. If a tuple doesn’t match anything in
S, just have the values for the columns of S be
null.

• This is called a left outer join, denoted .
• One can also have right outer joins and full outer

joins.
• The kinds of joins we had before are sometimes

called inner joins.

Outer Unions

• We might also want to do unions of sets which are
not union compatible.

• For instance, suppose we had R(X,Y) and S(X,Z).
• We say r from R and s from S match if r(X)=s(X).

In which case, in an outer union we output one
tuple where we use the values for Y and Z in the
remaining slots.

• If a tuple doesn’t match any tuple from the other
relation we include it in the output but we pad it
with nulls.

Tuple Relational Calculus
• This is another query language for the relational model, this time based

on logic.
• It is more declarative in the sense that we declare what data we want,

rather than say how to get it.
• It turns out the Relational Calculus is of equivalent expressive power

as the relational algebra.
• A typical query in the tuple relational calculus looks like: { t |

COND(t)}.
• For instance,

{t | EMPLOYEE(t) AND t.SALARY > 5000}
{t.FNAME, t.LNAME | EMPLOYEE(t) AND t.SALARY > 5000}

• EMPLOYEE(t) is called the range relation of tuple t.
• Informally, a tuple calculus expression gives, (1) a range relation R for

each tuple t, (2) a condition to select particular combinations of tuples,
and (3) a set of selected attributes.

• We are allowed to combine atomic conditions using AND, OR, NOT.

Existential and Universal
Quantifiers

• In addition to the above ways to create relational calculus expression we can
also create conditions using existential and universal quantifiers.

• For instance, the query: Retrieve the name and address of all employees who
work for the research department, might be expressed as:
{t.FNAME, t.LNAME, t.ADDRESS | EMPLOYEE(t) AND

(∃d)(DEPARTMENT(d) AND d.NAME = ‘Research’ AND
d.DNUMBER=t.DNO)}

To express: find the names of employee who work on all projects controlled
by department 5.

{e.FNAME, e.LNAME | EMPLOYEE(e) AND [(∀x)(NOT(PROJECT(x))
OR NOT (x.DNUM=5) OR ((∃w)(WORKS_ON(w) AND w.ESSN
=e.SSN AND x.PNUMBER =w.PNO))]}

Note: in the above it might be hard to figure out all the things which are not
projects. So might replace the universal with:

NOT (∃ x)(PROJECT(x) AND (x.DNUM=5)…

Safe versus Unsafe Expressions

• An expression which is guaranteed to only return a finite
number of outputs is called a safe expression.

• Otherwise, an expression is called unsafe.
• For example,

{t | NOT (EMPLOYEE(t))} is unsafe.

Domain Relational Calculus

• This is similar to the tuple relational
calculus except now we are work with
quantifiers over attributes.

• For example, to retrieve the birthday and
address of the employee named John B
Smith we might use the query:
{uv | (∃q) (∃r) (∃s) (∃t) (∃w) (∃x) (∃y)

(∃z)(EMPLOYEE(qrstuvwxyz) AND q=‘John’ AND r=‘B’ AND
s=‘SMITH’)}

