More Relational Algebra and the
Relational Calculus

CS157A
Chris Pollett
Oct. 5, 2005.

Outline

Complete sets of operators
Division

Aggregation and Grouping
Outer Joins and Unions
Tuple Relational Calculus

Domain Relational Calculus

Complete sets of operators

One can show that{e:m Y. — %} is a complete set.
That 1s, all the other relational algebra operations
we have defined can be defined using just these
operations.

These operations will turn out to be what you can
do in the relational calculus.

Already, we have seen join can be expressed using
selection and product.

Set difference can be expressed as:
RNS=(RUS)—((R-S)U(S—R))

Division

e The division operator 1s useful for expressing the
following kind of query: Retrieve the names of

employee who work on all projects that John
Smith works on:

SMITH +— 0pNAME="John' ANDLN AME='smith' (EMPLOY EE)
SMITH PNOS «— mpno(WORKS ON <gssy—ssy SMITH)
SSN_PNOS Tl'ESH_.ﬂ.;:pp.,-'(;{WGRI{E_GI"'&'T}

SSNS(SSN)+— SSN_PNOS + SMITH PNOS

RESULT Tl'F_.ﬂ.;‘,L-'LirE!Lp.,r‘.i_.-l._irE{SSf\'rS * E:L’IPLGYEEJ

e With a little work one can show division can be

expressed in term of projection, cartesian product,
and difference.

Aggregation and Grouping

There are some useful operations which cannot be
defined in terms of the basic operations of the
relation algebra. For instance: counts, averages.
There are other which are awkward to express like
minimums, and maximumes.

These are collectively called aggregate functions.

Another useful kind of operation 1s to be able to
group counts, averages, etc by some attribute. For
instance, average salaries in each department.

The general notation for both these kinds of ops 1s:

< grouping attribute > § g1 tion liﬁt;}{Rj

DNOFcount ssn(EMPLOY EE)

Recursive Closure Operations

The relational algebra does not support transitive
closures of relations.

So for instance, given a relation Parent(x,y), it 1s
possible to define a query that might return the

grandparents of Bob. Or even great-grandparents
of Bob.

But there 1s no single query that will return all
ancestors of Bob.

SQL3 proposes a syntax for such transitive
closures 1n SQL.

Outer Joins

In R*S, only tuples in R which have matching
tuples in S are kept.

One could 1imagine wanting to keep all tuples in R
in the output. If a tuple doesn’t match anything in
S, just have the values for the columns of S be
null.

This is called a left outer join, denoted =x.

One can also have right outer joins and full outer
joins. ><=,=>x=

The kinds of joins we had before are sometimes
called inner joins.

Outer Unions

We might also want to do unions of sets which are
not union compatible.

For instance, suppose we had R(X,Y) and S(X,Z).

We say r from R and s from S match 1if r(X)=s(X).
In which case, in an outer union we output one
tuple where we use the values for Y and Z in the
remaining slots.

If a tuple doesn’t match any tuple from the other
relation we include it 1n the output but we pad it
with nulls.

Tuple Relational Calculus

This i1s another query language for the relational model, this time based
on logic.

It 1s more declarative in the sense that we declare what data we want,
rather than say how to get it.

It turns out the Relational Calculus is of equivalent expressive power
as the relational algebra.

A typical query in the tuple relational calculus looks like: { t |
COND(t)}.

For instance,

{t EMPLOYEE(t) AND t.SALARY > 5000}

{tFNAME, t. LNAME | EMPLOYEE(t) AND t. SALARY > 5000}
EMPLOYEE(t) is called the range relation of tuple t.

Informally, a tuple calculus expression gives, (1) a range relation R for
each tuple t, (2) a condition to select particular combinations of tuples,
and (3) a set of selected attributes.

We are allowed to combine atomic conditions using AND, OR, NOT.

Existential and Universal
Quantifiers

In addition to the above ways to create relational calculus expression we can
also create conditions using existential and universal quantifiers.

For instance, the query: Retrieve the name and address of all employees who
work for the research department, might be expressed as:

{t FNAME, t LNAME, t. ADDRESS | EMPLOYEE(t) AND
(3d)(DEPARTMENT(d) AND d.NAME = ‘Research’ AND

d.DNUMBER=t.DNO)}

To express: find the names of employee who work on all projects controlled
by department 5.

{e.FNAME, e. LNAME | EMPLOYEE(e) AND [(Vx)(NOT(PROJECT(x))
OR NOT (x.DNUM=5) OR ((Iw)(WORKS_ON(w) AND w.ESSN
=e.SSN AND x.PNUMBER =w.PNO))][}

Note: in the above it might be hard to figure out all the things which are not
projects. So might replace the universal with:

NOT (3 x)(PROJECT(x) AND (x. DNUM=5)...

Sate versus Unsate Expressions

An expression which i1s guaranteed to only return a finite
number of outputs is called a safe expression.

Otherwise, an expression is called unsafe.

For example,
{t INOT (EMPLOYEE(t))} 1s unsafe.

Domain Relational Calculus

e This 1s similar to the tuple relational
calculus except now we are work with
quantifiers over attributes.

* For example, to retrieve the birthday and
address of the employee named John B
Smith we might use the query:

{uv | @g) @ @s) @) @w) @x) @y)
(dz)(EMPLOYEE(qgrstuvwxyz) AND gq=‘John’ AND r=‘B’ AND
s=‘SMITH’)}

