# The Relational Algebra 

CS157A
Chris Pollett
Oct. 3, 2005.

## Outline

- Overview of the Relation Algebra
- Select Operations
- Project Operations
- Composition and Rename Operations
- Union, Intersection and Minus
- Cartesian Product
- Join


## Overview of the Relation Algebra

- We now discuss how retrieval of data stored according to the relational model can be done.
- There are actually two approaches: the relational algebra (functional) and the relational calculus (logic-based, so order of operation somewhat less emphasized).
- The relational algebra is vaguely behind SQL's query language.
- The relational calculus is vaguely behind schemes like Query By Example.


## Select Operations

- Used to select a subset of the tuples from a relation that satisfy a selection condition.

$$
\begin{gathered}
\sigma_{D N O=4}(E M P L O Y E E) \\
\left.\sigma_{(D N O=4} \text { AND } S A L A R Y>25000\right) \text { OR } D N O=5
\end{gathered}
$$

- Notice atomic condition of the form: <attribute name><comparison op><constant value> <attribute name><comparison op><attribute name>
- More complicated expressions can be built from these using AND, OR, NOT.


## Properties of Select

$$
\begin{aligned}
\sigma_{<\text {cond } 1 \gg}\left(\sigma_{<\text {cond } 2>(R))=\sigma_{<\text {cond } 2>}\left(\sigma_{<\text {cond } 1>(R))}\right.} \begin{array}{rl} 
& (\text { Commutative }) \\
\sigma_{<\text {cond }_{1}>}\left(\sigma_{<\text {cond }_{2}>}\left(\ldots \sigma_{<\text {cond }_{n}>}(R) \ldots\right)\right)=\sigma_{<\text {cond }_{1}>} \text { AND } \ldots \text { AND }_{<\text {cond }_{n}>}(R) \\
& (\text { Cascade })
\end{array}\right.
\end{aligned}
$$

## Project Operations

- This operation selects certain columns from the table and discards all other columns.
$\pi_{L N A M E, F N A M E, S A L A R Y}(E M P L O Y E E)$

$$
\pi_{<\text {attribute list }>}(R)
$$

- Note; if project on non-key attributes, duplicate tuples might occur. Project, however, gets rid of duplicates. (Duplicate elimination).
$\pi_{<l i s t 1\rangle}\left(\pi_{<l i s t 2\rangle}(R)\right)=\pi_{<l i s t 1\rangle}(R)$ if $\langle$ list1 $\rangle$ is contained in $\langle$ list 2$\rangle$.


## Composition and Rename Operations

- We can create relational algebra expressions from our relational value operations using composition:

$$
\pi_{F N A M E, L N A M E, S A L A R Y}\left(\sigma_{D N O=5}(E M P L O Y E E)\right)
$$

- Alternatively, we can explicitly show intermediate results:

```
DEP5_EMPS \leftarrow- 的NO=5}(EMPLOYEE
RESULT}\leftarrow\mp@subsup{\pi}{FNAME,LNAME,SALARY (DEP5_EMPS)}{
```

- We can do renaming of columns either via the intermediate table way or with a RENAME operation:
$R($ FIRST, LAST,$S A L) \leftarrow \pi_{\text {FNAME,LNAME,SALARY }}(E M P)$ $\rho_{R(F I R S T, L A S T, S A L)}(E M P)$


## Union, Intersection and Minus

- The relational algebra also allows certain set theoretic operations:
- Union: RUS returns in a relation those tuples which are either in R or in S
- Intersection: $R \cap S$ returns in a relation those tuples which are in both $R$ and $S$.
- Difference: RS returns is a relation those tuples of $R$ which are not in S .
- To work, the relations R and S must have compatible attributes.
- Union and Intersection are commutative. i.e., $R \cup S=S \cup R$ and $R \cap S=S \cap R$.
- Set difference is not commutative.


## Cartesian Product

- We now consider the binary operation $R\left(A_{1} \ldots A_{n}\right) \times S\left(B_{1}, \ldots, B_{m}\right)$.
- This relation contains all tuples of the form: $\left(\mathrm{t}\left[\mathrm{A}_{1}\right], \ldots, \mathrm{t}\left[\mathrm{A}_{\mathrm{n}}\right], \mathrm{s}\left[\mathrm{B}_{1}\right], \ldots, \mathrm{s}\left[\mathrm{B}_{\mathrm{m}}\right]\right)$ where t is a tuple in the instance of R and s is a tuple from the instance of $S$.


## Join

- Join is a useful combination of both a select operation and a cartesian product operation:

$$
R \bowtie_{<j o i n ~ c o n d i t i o n>} S:=\sigma_{<j o i n ~ c o n d i t i o n>} R \times S
$$

- Implementation ways these two operations can often be done faster together.
- The typical condition is usual an equality between attributes:

$$
D E P T \bowtie_{M G R S S N=S S N} E M P
$$

- If the join involves a more general selection then it is called a theta-join.


## Equijoins and Natural Joins

- If the join condition involves only equalities of attributes, it is called an equijoin.
- If we delete the duplicate columns in the result of an equijoin, we get a join called a natural join.
- We write $\mathrm{R} * \mathrm{~S}$ for the natural join of R and S .
- Notice if we don't list the joined attributes, it is assumed we are joining attributes with the same name in both relations.

