The Relational Algebra

CS157A Chris Pollett Oct. 3, 2005.

Outline

- Overview of the Relation Algebra
- Select Operations
- Project Operations
- Composition and Rename Operations
- Union, Intersection and Minus
- Cartesian Product
- Join

Overview of the Relation Algebra

- We now discuss how retrieval of data stored according to the relational model can be done.
- There are actually two approaches: the relational algebra (functional) and the relational calculus (logic-based, so order of operation somewhat less emphasized).
- The relational algebra is vaguely behind SQL's query language.
- The relational calculus is vaguely behind schemes like Query By Example.

Select Operations

• Used to select a subset of the tuples from a relation that satisfy a **selection condition**.

$\sigma_{DNO=4} (EMPLOYEE) \\ \sigma_{(DNO=4} \text{ AND } _{SALARY>25000)} \text{ OR } _{DNO=5} (EMPLOYEE)$

- Notice atomic condition of the form: <attribute name><comparison op><constant value> <attribute name><comparison op><attribute name>
- More complicated expressions can be built from these using AND, OR, NOT.

Properties of Select

 $\sigma_{<cond1>}(\sigma_{<cond2>}(R)) = \sigma_{<cond2>}(\sigma_{<cond1>}(R))$ (Commutative)

 $\sigma_{<cond_1>}(\sigma_{<cond_2>}(...\sigma_{<cond_n>}(R)...)) = \sigma_{<cond_1>} \text{ AND } ... \text{ AND}_{<cond_n>}(R)$ (Cascade)

Project Operations

• This operation selects certain columns from the table and discards all other columns.

 $\pi_{LNAME,FNAME,SALARY}(EMPLOYEE)$

 $\pi_{< attribute \ list>}(R)$

• Note; if project on non-key attributes, duplicate tuples might occur. Project, however, gets rid of duplicates. (Duplicate elimination).

 $\pi_{<list1>}(\pi_{<list2>}(R)) = \pi_{<list1>}(R) \text{ if } < list1 > \text{ is contained in } < list2 >.$

Composition and Rename Operations

• We can create relational algebra expressions from our relational value operations using composition:

 $\pi_{FNAME,LNAME,SALARY}(\sigma_{DNO=5}(EMPLOYEE))$

• Alternatively, we can explicitly show intermediate results:

 $DEP5_EMPS \leftarrow \sigma_{DNO=5}(EMPLOYEE)$ RESULT $\leftarrow \pi_{FNAME,LNAME,SALARY}(DEP5_EMPS)$

 We can do renaming of columns either via the intermediate table way or with a RENAME operation:
 R(FIRST, LAST, SAL) ← π_{FNAME,LNAME,SALARY}(EMP)
 ρ_{R(FIRST,LAST,SAL)}(EMP)

Union, Intersection and Minus

- The relational algebra also allows certain set theoretic operations:
 - Union: $R \cup S$ returns in a relation those tuples which are either in R or in S
 - Intersection: $R \cap S$ returns in a relation those tuples which are in both R and S.
 - Difference: R/S returns is a relation those tuples of R which are not in S.
- To work, the relations R and S must have compatible attributes.
- Union and Intersection are commutative. i.e., $R \cup S = S \cup R$ and $R \cap S = S \cap R$.
- Set difference is not commutative.

Cartesian Product

- We now consider the binary operation R(A₁...A_n) x S(B₁, ..., B_m).
- This relation contains all tuples of the form: (t[A₁],..., t[A_n], s[B₁],..., s[B_m]) where t is a tuple in the instance of R and s is a tuple from the instance of S.

Join

• Join is a useful combination of both a select operation and a cartesian product operation:

 $R\bowtie_{<join\ condition>}S:=\sigma_{<join\ condition>}R\times S$

- Implementation ways these two operations can often be done faster together.
- The typical condition is usual an equality between attributes: DEPT ⋈_{MGRSSN=SSN} EMP
- If the join involves a more general selection then it is called a theta-join.

Equijoins and Natural Joins

- If the join condition involves only equalities of attributes, it is called an equijoin.
- If we delete the duplicate columns in the result of an equijoin, we get a join called a natural join.
- We write R*S for the natural join of R and S.
- Notice if we don't list the joined attributes, it is assumed we are joining attributes with the same name in both relations.