SJSU Students
11/18/2022

HW 4
1. Express each of the following as first order logic formula in the language with
constant 0, function symbols MakeTree, LeftTree, RightTree and predicates
Equals, and BinaryTree:
(a) 0 is a binary tree
(b) if x, y are binary trees, then so is MakeTree(x,y),
(c) z equals itself
(d) 0 is not equal to MakeTree(x,y),
(e) if z equals MakeTree(x,y) then LeftTree(z) equals x and RightTree(z) equals vy,
(f) if x is a binary tree and x is not equal to 0, then LeftTree(x) and RightTree(x) are
binary trees.

a) BinaryTree(0)

b) Vxy (BinaryTree(x)A\ BinaryTree(y)) = BinaryTree(MakeTree(x,y)))

c) Equals(z, z)

d) —Equals(0, MakeTree(x,y))

e) Vz Equals(z, MakeTree(x,y)) = (Equals(LeftTree(z), x)AEquals(RightTree(z), y))

f) Vx (BinaryTree(x)A“Equals(x,0)) =
(BinaryTree(LeftTree(x))ABinaryTree(RightTree(x)))

2. Using our Natural Deduction system extended by rules for First-order logic,
assuming (a)-(f) of problem 1 as our knowledge base, give a formal proof of the
formula a := there exists an x such that x is a binary tree and
LeftTree(LeftTree(RightTree(x))) equals 0.

Prove: a := 3 x (BinaryTree(x) A Equals(LeftTree(LeftTree(RightTree(x))),0))

R1 | BinaryTree(0) KB

R2 | vxy (BinaryTree(x)A\ BinaryTree(y)) = KB
BinaryTree(MakeTree(x,y)))

R3 | Equals(z, z) KB

R4 | ~Equals(0, MakeTree(x,y)) KB




R5 | Vz Equals(z, MakeTree(x,y)) = KB
(Equals(LeftTree(z), x)AEquals(RightTree(z), y))

R6 | Vx (BinaryTree(x) A "Equals(x,0)) = KB
(BinaryTree(LeftTree(x)) A\ BinaryTree(RightTree(x)))

R7 | Equals(MakeTree(0,0), MakeTree(x,y)) = For All Elimination to R5
(Equals(LeftTree(MakeTree(0,0)),
x)AEquals(RightTree(MakeTree(0,0)), y))

R8 | (Equals(LeftTree(MakeTree(0,0)), Modus Ponen R3 and
x)AEquals(RightTree(MakeTree(0,0)), y)) R7

R9 | Equals(RightTree(MakeTree(0,0)), x) And Elimination on R8

R10 | Equals(RightTree(MakeTree(0,0)), MakeTree(x,y)) For All Elimination to R5
= (Equals(LeftTree(RightTree(MakeTree(0,0))),
x)AEquals(RightTree(RightTree(MakeTree(0,0))), y))

R11 | Equals(LeftTree(RightTree(MakeTree(0,0))), Modus Ponen R9 and
x)AEquals(RightTree(RightTree(MakeTree(0,0))), y) | R10

R12 | Equals(LeftTree(RightTree(MakeTree(0,0))), x) And elimination on R11

R13 | Equals(LeftTree(RightTree(MakeTree(0,0))), For All Elimination to R5
MakeTree(x,y)) =
(Equals(LeftTree(LeftTree(RightTree(MakeTree(0,0))
),
x)AEquals(RightTree(LeftTree(RightTree(MakeTree(
0,0))). ¥))

R14 | Equals(LeftTree(LeftTree(RightTree(MakeTree(0,0))) | Modus Ponen R12 and
), X) R13

R15 [ (BinaryTree(0) A BinaryTree(0)) = For All Elimination to R2
BinaryTree(MakeTree(0,0)))

R16 | BinaryTree(MakeTree(0,0)) Modus Ponen to R1 and

R7
R17 | BinaryTree(MakeTree(0,0)) A And Introduction of R14

Equals(LeftTree(LeftTree(RightTree(MakeTree(0,0)))
), X)

and R16




R18 | 3 x (BinaryTree(x) A Apply Exist introduction
Equals(LeftTree(LeftTree(RightTree(x))), 0)) to R17

3. Let the formulas of Problem 1 be our KB and o be as in Problem 2. Skolemize the

formulas in KB and 7q, convert the result to CNF, and then clauses. Finally, find a
resolution refutation. For at least one place where you needed to do unification carefully
show the steps the algorithm from class would use.

Skolemize each formula in KB and -a:

a) BinaryTree(0)
b) Vxy (BinaryTree(x)ABinaryTree(y)) = BinaryTree(MakeTree(x,y)))
c) Equals(z, z)
d) —Equals(0, MakeTree(x,y))
e) VzEquals(z, MakeTree(x,y)) = (Equals(LeftTree(z), x)AEquals(RightTree(z), y))
f) Vv x (BinaryTree(x)A~Equals(x,0)) =
(BinaryTree(LeftTree(x))ABinaryTree(RightTree(x)))
-a) Vx ("BinaryTree(x) V “Equals(LeftTree(LeftTree(RightTree(x))),0))

Convert the result to CNF

a) BinaryTree(0)
b) -BinaryTree(x)V - BinaryTree(y) V BinaryTree(MakeTree(x,y))
c) Equals(z, z)
d) —Equals(0, MakeTree(x,y))
e1) “Equals(z, MakeTree(x,y)) V Equals(LeftTree(z), x)
e2) ~Equals(z, MakeTree(x,y)) V Equals(RightTree(z), y)
f1) “BinaryTree(x) V Equals(x,0) V BinaryTree(LeftTree(x)
f2) “BinaryTree(x) V Equals(x,0) V BinaryTree(RightTree(x))
-a) "BinaryTree(x) V "Equals(LeftTree(LeftTree(RightTree(x))),0)

Convert to clauses
a) {BinaryTree(0)}
b) {~BinaryTree(x), "BinaryTree(y), BinaryTree(MakeTree(x,y))}
c) {Equals(z,z)}
d) {~Equals(0, MakeTree(x,y))}
e1) {~Equals(z, MakeTree(x,y)), Equals(LeftTree(z), x) }
e2) {"Equals(z, MakeTree(x,y)), Equals(RightTree(z), y)}



f1) {-BinaryTree(x) , Equals(x,0), BinaryTree(LeftTree(x))}
f2) {~BinaryTree(x) , Equals(x,0), BinaryTree(RightTree(x))}
—a) {~BinaryTree(x) , "Equals(LeftTree(LeftTree(RightTree(x))), 0)}

Resolution Refutation

R1 | {BinaryTree(0)} KB

RZ | {-BinaryTree(x), "BinaryTree(y), BinaryTree(MakeTree(x,y))} KB

R3 | {Equals(z,z)} KB

R4 | {~Equals(0, MakeTree(x,y))} KB

R5 | {mEquals(z, MakeTree(x,y)), Equals(LeftTree(z), x)} KB

R6 | {(mEquals(z, MakeTree(x,y)), Equals(RightTree(z), y)} KB

R7 | {-BinaryTree(x), Equals(x,0), BinaryTree(LeftTree(x))} KB

R8 | {-BinaryTree(x) , Equals(x,0), BinaryTree(RightTree(x))} KB

R9 | {~BinaryTree(x), "Equals(LeftTree(LeftTree(RightTree(x))), 0)} KB

R10 | {~BinaryTree(y), BinaryTree(MakeTree(0,y))} Re%olve from R1 and R2,
X->

R11 | {~BinaryTree(x), BinaryTree(MakeTree(x,0))} Re%olve from R1 and R2,
y->

R12 | {=BinaryTree(MakeTree(x,0)), BinaryTree(MakeTree(0,MakeTree(x,0)))} Resolve from R10 and
R11, y->MakeTree(x,0)

R13 | {BinaryTree(MakeTree(0,0))} Re%olve from R1 and R11,
X->

R14 | {BinaryTree(MakeTree(0,MakeTree(MakeTree(0,0),0))) Resolve from R12 and
R13, x->MakeTree(0,0)

R15 | {~Equals(LeftTree(LeftTree(RightTree(MakeTree(0,MakeTree(MakeTree(0,0 | Resolve from R9 and R14,

),0))))), 0)} x->MakeTree(0,MakeTree(

MakeTree(0,0),0))

R16

{~Equals(LeftTree(RightTree(MakeTree(0,MakeTree(MakeTree(0,0),0)))),
MakeTree(0,y))}

Resolve from R5 and R15,
z->LeftTree(RightTree(Ma
keTree(0,MakeTree(Make
Tree(0,0),0)))), x->0




R17

{~Equals(RightTree(MakeTree(0,MakeTree(MakeTree(0,0),0))),
MakeTree(MakeTree(0,y),y)) }

Resolve from R5 and R16,
z->RightTree(MakeTree(0,
MakeTree(MakeTree(0,0),
0))), x->MakeTree(0,y)

R18

{~Equals(MakeTree(0,MakeTree(MakeTree(0,0),0)),
MakeTree(x,MakeTree(MakeTree(0,0), 0))) }

Resolve from R6 and R17,
z->MakeTree(0,MakeTree(
MakeTree(0,0),0)),
y->MakeTree(MakeTree(0,
0), 0)

R19

{}

Resolve from R3 and R18,
z->MakeTree(x,MakeTree(
MakeTree(0,0), 0)),

x->0




Sample of using Unification Algorithm:
For the resolved clause R13
1. Call Unified(BinaryTree(x), BinaryTree(0), {})
2. Both BinaryTree(x), BinaryTree(0) are terms
a. Call Unify(args(BinaryTree(x)), args(BinaryTree(0)),
Unify(op(BinaryTree(x)), op(BinaryTree(0)), {}))
b. Calculate arguments:
i. args(BinaryTree(x)) returns x
ii. args (BinaryTree(0)) return 0
iii. op(BinaryTree(x)) returns BinaryTree(a)
iv. — op(BinaryTree(0)) returns BinaryTree(a)
v. op(BinaryString(0) == BinaryString(a), Unify(op(BinaryTree(x)),
op(BinaryTree(0)), {}) return {}
c. Function call in a) becomes Unify(x, 0, {})
d. Xis avariable
i.  Unify-var(x, 0)
i. Sisempty, and Occur-Check(x, 0) == False, return (x |-> 0)
e. Return (x |->0)



4. Pretend your parents want you to change the sheets on your king size bed with
two pillows. Imagine all the different things you might need to choose between,
put on, or remove from your bed to accomplish this daunting task. Model this as
a PDDL problem. Then use the GraphPlan algorithm to find a solution.

PDDL Problem:

Init( On(oldSheets, bed) A On(pillow1, oldSheets) A On(pillow2, oldSheets)
N\ On(newSheets, ground) )

Goal( On(newSheets, bed) A On(pillow1, newSheets) A On(pillow2, newSheets)
A\ On(oldSheets, ground) )

Action( remove(x),
PRECOND: Pillow(x) V Sheets(x)
EFFECT: On(x, ground) )

Action( putOn(x),
PRECOND: (Pillow(x) V Sheets(x)) A On(x, ground)
EFFECT: On(x, bed))

GraphPlan algorithm:
Start GraphPlan algorithm
Start with S0, initial state shown in diagram
3 available action in AO: remove(oldSheets), remove(pillow1), remove(pillow2)
After applying the actions AO, we get S1
Goal not reached, so go to A1
3 available action in A1: putOn(newSheets), putOn(pillow1), putOn(pillow2)
After applying the actions A1, we get S2
We reached the goal at S2:
o On(newSheets, bed) A On(pillow1, newSheets) A On(pillow2, newSheets)

N\ On(oldSheets, ground) are all present

e Run Extract-Solution



S0 A0 81 A1

s2
On(oldSheets, bed)

On(oldSheets, bed) N On(oldSheets, bed) ]
-On(oldSheets, bed)

On(oldSheets, ground)

~0n(oldSheets, ground) “0n(oldSheets, ground)
On(pillow1, oldSheets) On(pillow1, oldSheets)
~On(pillow1, oldSheets)
remove(aldSheets/On(pil0w1, newSheets) putOn(newSheets)
—On(pillow1, newSheets) — ™ remove(pillow1) —On(pillow1, newSheets) putOn(piI\ovS)
/remove(plllowZ) \Dn(p\llowt ground) putOn(pillow2)
=~On(pillow1, ground) =On(pillow1, ground)

On(pillow2, oldSheets) On(pillow2, oldSheets)
~On(pillow2, oldSheets)

On(pillow2, newSheets)

—0n(pillow2, newSheets) —On(pillow2, newSheets)
On(pillow2, ground)

~On(pillow2, ground) =0On(pillow2, ground)

On(newSheets, ground) —{ On(newSheets, ground)

—0On(newSheets, ground)
On(newSheets, bed)

—~On(newSheets, bed)

—~On(oldSheets, bed)
On(oldSheets, ground)
<0n(oldSheets, ground)
On(pillow1, oldSheets)

~On(pillow1, oldSheets)

On(pillow1, newSheets)

“On(pillow1, newSheets)

On(pillow1, ground)
—On(pillow1, ground)
On(pillow2, oldSheets)
=0n(pillow2, oldSheets)

On(pillow2, newSheets)

—“On(pillow2, newSheets)

On(pillow2, ground)
=On(pillow2, ground)

On(newSheets, ground)

~On(newSheets, ground)

On(newSheets, bed)

—~On(newSheets, bed)

5. Express the Yale Shooting Problem in PDDL and show your solution does not

suffer from the frame problem.

Init( Alive(Fred) A —Loaded(gun) )

Goal( ~Alive(Fred) A ~Loaded(gun) )

Action( Load(gun),
PRECOND: —Loaded(gun)
EFFECTS: Loaded(gun))

Action( Shoot(Fred),
PRECOND: Loaded(gun)
EFFECTS: -Alive(Fred) A "Loaded(gun) )

Solution: [Load(gun), Shoot(Fred)]



https://en.wikipedia.org/wiki/Yale_shooting_problem

Our solution to the Yale shooting problem represented in PDDL does not suffer from the
frame problem because it clearly defines what changes or stays the same as a result of
an action. In our solution, the action Load(gun) has the effect of loading the gun, and
the effect of the Shoot(Fred) action clearly defines that Fred is dead and the gun
becomes unloaded. There is no confusion that the goal state could be reached by the
action Load(gun) and Shoot(Fred).





