1. $0<=\mathrm{P}(\mathrm{a})<=1$
p (true) $=1$
$\mathrm{p}($ false $)=0$
$p(a$ or $b)=p(a)+p(b)-p(a$ and $b)$
2. $\quad \mathrm{p}(\mathrm{m} \mid \mathrm{l})=(\mathrm{P}(\mathrm{l} \mid \mathrm{m}) * \mathrm{p}(\mathrm{m})) / \mathrm{p}(\mathrm{l})$
$\mathrm{p}(\mathrm{l} \mid \mathrm{m})=(\mathrm{p}(\mathrm{m} \mid \mathrm{l}) \mathrm{p}(\mathrm{l})) / \mathrm{p}(\mathrm{m})$
$=.99 * 1 /(10$ to the 7$) / 1(30)$
$=.297 \times 10^{-6}$
3. Map-maximum a posteriori an approximation of Bayesian prediction where predictions are based on most probable hypothesis. That is an hi that maximizes $\mathrm{p}(\mathrm{hi} \mid$ data $) * \mathrm{p}(\mathrm{hi})$
4.
5. $\mathrm{p}($ hot and sunny $)=.4+.1=.5$
6. x 1 xor x 2 xor x 3
make truth table, and graph the box that is not separable by a plane
7. $\mathrm{w} 0=(\mathrm{n}-.5)$
$\mathrm{wi}=1.0,1<=\mathrm{i}<=\mathrm{n}$
use sign function
$\mathrm{h}(\mathrm{x})=\operatorname{sgn}($ (wixi from $\mathrm{I}=0$ to $\mathrm{n}-(\mathrm{n}-.5)) \quad \mathrm{h}(\mathrm{x})=$ output
8. $\quad \operatorname{delta}_{\mathrm{j}}=\mathrm{g}^{\prime}\left(\mathrm{in}_{\mathrm{j}}\right) \operatorname{sum}\left(\mathrm{w}_{\mathrm{ji}}\right.$ delta $\left._{\mathrm{i}}\right)$
$\mathrm{W}_{\mathrm{k}, \mathrm{j}}<-\mathrm{W}_{\mathrm{k}, \mathrm{j}}+$ alpha $\mathrm{x} \mathrm{a}_{\mathrm{k}} \mathrm{xdelta}_{\mathrm{j}}$
back propagation is process of adjusting the weights of the hidden layers based on how much they contributed to the final output error.
9. Mercer's theorem states any kernel of a positive definite linear operator corresponds to an inner product in some feature space. A kernel function is a function of the form $K(x i, x j):=F\left(x _i\right) \backslash \operatorname{dot} F\left(x _j\right)$
(6)

$$
\begin{aligned}
& X_{1} \quad \operatorname{OR} X_{2} \quad X C R X_{3} \\
& \left\lvert\, \begin{array}{cc|c|c|}
X_{1} & X_{2} & X_{2} & X_{1} X_{0} R X_{2} X \operatorname{XRX} \\
0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right. \\
& x_{3}
\end{aligned}
$$

No plane can separate group of On's and Offs
(3) MAP-maximm a postermer.

$$
\text { - an epproximentoon of } B \times \text { using presction where }
$$

4 Ockham's Razor - The smplest whion is the best

```
        Using hme - maxmmeziog
```

 \(P\left(d h_{2}\right) P\left(h_{h}\right)\) is squmbent to
 \(\operatorname{minimizing} \frac{1}{p(d h) P(h i)}\)

$=-\log _{2} p\left(d h_{1}\right) \log _{2} \log _{1}$
$=$ If of bis needed to describe data d
whth bypothaces ha $_{e}+$ \# an bity to descrbe
hé

```
        somap is eqamin," vo choosing shortert stang
```

$$
\begin{aligned}
& \text { predictione are bosed an the most proberible }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P(d)hetor) }
\end{aligned}
$$

