
HW4 Algorithm: 
Learning in Perceptrons: 
Back Propogation: 
 
 
1 layer neuron network is a perceptron network.  1 neuron is a perceptron 
 
Learning for perceptrons 
 
Let y be the output that we want a perceptron to give on input X.   
i.e. (X, y) is an example pair. 
 
Denote by hw(X) what the perceptron actually outputs. 
The square of the error we make in using this over y is. 
 E = ½ Err2 = ½ (y - hW (X))2 
 
We want to choose W so as to make this error as small as possible. 
 
Components of the gradient of this function are: 
 Deriaitive E / Derivative Wj   = Err X Derivitive Err / Derivitive Wj 
     = Err * -g’(Σ (wjXj) from h = 0 to n) * Xj 
 
g’ for sigmoid is well defined. 
g’  for step function -> oh no! 
 
At a local minimum, all these partials will be 0. 
 
So choose new Wj’s to be 
 
 Wj <- Wj + sigma (Err * g’ (Σ(wjxj))*Xj 
  sigma = called learning rate (is some constant, say –1) 
  
 
Learning algorithm  
 Repeat till error reasonable small or non-changing 
  for each (X, y) training pair compute update to weights using our update rule 
   
Two more More Layers 
 
(For HW if use probably want just 2 layers) 
 
Output Layer        O         O         O     Weights W_i,j 
Hidden Layer O    O    O   O    O    O O    O    O Weights W_j,k  
Inputs  []    []     [] 
 
Each neuron is connected to every neuron in the level above. 
Training rule for this layer same as for one layer case: 
 Wj, i <- Wj, i + Sigma * aj * deltai (Erri * g’(ΣWj, i, xi)) = deltai 
 
What about updating the Wk,j’s?  (called back propogation) 
 
Want to compute how much error in final layer is caused by a given deltaj = g’(inj)Σwj, i deltai 



 W_j,k <- W_j,k + alpha*a_k*delta_j 
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