
HW4 Algorithm:
Learning in Perceptrons:
Back Propogation:

1 layer neuron network is a perceptron network. 1 neuron is a perceptron

Learning for perceptrons

Let y be the output that we want a perceptron to give on input X.
i.e. (X, y) is an example pair.

Denote by hw(X) what the perceptron actually outputs.
The square of the error we make in using this over y is.
 E = ½ Err2 = ½ (y - hW (X))2

We want to choose W so as to make this error as small as possible.

Components of the gradient of this function are:
 Deriaitive E / Derivative Wj = Err X Derivitive Err / Derivitive Wj
 = Err * -g’(Σ (wjXj) from h = 0 to n) * Xj

g’ for sigmoid is well defined.
g’ for step function -> oh no!

At a local minimum, all these partials will be 0.

So choose new Wj’s to be

 Wj <- Wj + sigma (Err * g’ (Σ(wjxj))*Xj
 sigma = called learning rate (is some constant, say –1)

Learning algorithm
 Repeat till error reasonable small or non-changing
 for each (X, y) training pair compute update to weights using our update rule

Two more More Layers

(For HW if use probably want just 2 layers)

Output Layer O O O Weights W_i,j
Hidden Layer O O O O O O O O O Weights W_j,k
Inputs [] [] []

Each neuron is connected to every neuron in the level above.
Training rule for this layer same as for one layer case:
 Wj, i <- Wj, i + Sigma * aj * deltai (Erri * g’(ΣWj, i, xi)) = deltai

What about updating the Wk,j’s? (called back propogation)

Want to compute how much error in final layer is caused by a given deltaj = g’(inj)Σwj, i deltai

 W_j,k <- W_j,k + alpha*a_k*delta_j

	Learning for perceptrons
	Two more More Layers

