More sets. Sequences, tuples, functions, relations.

CS154

Chris Pollett
Jan. 30, 2006.

Outline

- Venn Diagrams, basic set operations
- Sequences and Tuples
- Functions and Relations

More on sets

- Order of elements doesn't matter for sets:

$$
\{1,5\}=\{5,1\}
$$

- Repetitions also don't matter:
$\{1,1,1,4,4,5\}=\{1,4,5\}$
- If we want repetitions to matter but still don't care about order then have a multiset.

Basic Set Operations

- Given two sets A and B, we can:
- Take their union

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- Take their intersection

$$
\mathrm{A} \cap \mathrm{~B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{~A} \text { and } \mathrm{x} \in \mathrm{~B}\}
$$

- Take their difference

$$
A / B=\{x \mid x \in A \text { and } x \notin B\}
$$

- If we have a universe, U , under consideration, then taking the difference with respect to this set is called taking a complement. $\overline{\mathrm{A}}=\mathrm{U} \backslash \mathrm{A}$.

Venn Diagrams

- Sometimes it is useful to use Venn diagrams to represent or reason about sets.
- In such a diagram a set is represent by a circle or some other shape and points in the circle represent elements of this set

- By overlapping such sets and shading only the region one wants, one can represents sets operations. For example $A \cup B$

Tuples

- Given two objects, we write (a, b) for their ordered pair. This denotes the set \{a, \{a,b\}\}.
Notice this is different then the set (b, a) which is $\{b,\{b, a\}\}=\{b,\{a, b\}\}$. So order matters.
- We can iterate this operation $(a, b, c)=(a,(b, c))$. This would be called an ordered 3-tuple.
- In general, one can have ordered k -tuples.
- Given two sets A, B their Cartesian Product AxB is: $\{(a, b) \mid a \in A$ and $b \in B\}$.
- We write A^{k} for AxAx... xA.

Natural Numbers (formally)

- The natural numbers can be defined using only sets.
- We use the empty set \varnothing for 0 .
- Then given a set A, define $S(A)$, the successor of A, to be the set $\mathrm{A} \cup\{\mathrm{A}\}$.
- Define 1 as $S(0)=\{\varnothing\}, 2$ as $S(1)=\{\varnothing,\{\varnothing\}\}, \ldots$
- The natural numbers can be defined as the smallest set containing \varnothing and closed under successor.
- Using pairing could now define \mathbb{Z} using just sets

Sequences

- A sequence is an ordered list of objects.
- So an ordered pair is a sequence
- Any k-tuple for any k will be a sequence.
- We will also allow infinite sequences.

Power Set

- Given a set A , we define its power set, $P(A)$, to be the set of all subsets of A.
- For example, if $A=\{a, b, c\}$, then $P(A)$ is

$$
\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Functions

- A function associates the values of some input set called the domain, with some output set called the range.
- We write $\mathrm{f}: \mathrm{A}->\mathrm{B}$ to say f is a function or mapping from A to B.
- We write $f(a)=b$ to say that f maps the element a of A to b of B.
- We can view a function as a set of pairs of the form (a,b), where we have one and only pair for each element of A.

More Functions

- Succ: $\mathbb{N} \longrightarrow \mathbb{N}$
$\operatorname{Succ}(x)=x+1$
Notice each value of the range there is at most one element that maps to it. Such a function is called injective or one-to-one.
- Add: $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$
$\operatorname{Add}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$
Notice for each element x in the range there is some element which maps to it. (For instance, $(x, 0)$). Such a function is called surjective or onto.
- A function which is both one-to-one and onto is called a bijection.
- Notice Add takes two arguments. The number of arguments to a function is called its arity. We would call Add a binary function. In general, can have k-ary functions.
- Note some functions such as + , *, - are typically written in infix notation(i.e., $x-y$) rather than prefix notation $-(x, y)$.

Relations

- A predicate or property is a function whose range is \{TRUE, FALSE\}.
- A predicate whose domain is a set of k-tuples is called a relation.
- As with functions, one can have binary, k-ary relations.
- As an example of a relation one might have Less $\mathbb{N} \times \mathbb{N} \longrightarrow\{$ TRUE, FALSE $\}$ $\operatorname{Less}(\mathrm{x}, \mathrm{y})=$ TRUE if $\mathrm{x}<\mathrm{y}$ and FALSE otherwise.

Equivalence Relations

- One particularly useful kind of relation is an equivalence relation. Such a relation acts like ' $=$ '.
- A binary relation R is an equivalence relation if for each $\mathrm{x}, \mathrm{y}, \mathrm{z}$:
$-R$ is reflexive, that is, $x R x$. ($x R x$ is just R written in infix and we write $x R x$ to mean $x R x=T R U E)$.
$-R$ is symmetric, that is, $x R y$ implies $y R x$
$-R$ is transitive, that is, $x R y$ and $y R z$ implies $x R z$.
- For example congruent $\bmod n$ is an equivalence relation.

