
Yet More Reducibility

CS154
Chris Pollett

Apr 26, 2006.

Outline

• More on Reductions via Computation
Histories

• Start on Post Correspondence Problem

ALLCFG
• Computation Histories can be used to show some problems about

CFGs are undecidable.
• Let ALLCFG be the language {<G> | G is a CFG and L(G) = ∑*}.
Theorem. ALLCFG is undecidable.
Proof. Assume ALLCFG is decidable by machine N, we will show how you

could use this along with computation histories to decide ATM. Recall
for the ELBA reduction we showed that an LBA can recognize the
language:
L = {w | w = C1#C2..#Ck is a accepting computation history of Turing
 Machine M on input x}.
This language is not context-free (can prove this using the Pumping
lemma). The basic is we’d like to verify pairs of configurations to see
one follows the next, but if we were using a PDA and tried to push the
characters of Ci onto the stack then when we pop them off they’d be in
the wrong order to do the verification. Let uR denote the string
consisting of the characters of u in reverse order To solve our problem
we redefine a computation history so it has the format w = C1 #C2

R# C3
..#Ck. Let L now mean the language before but with this definition…

More on ALLCFG

(Proof cont’d) of computation history. Can show there is a PDA which
given a string w can check:

1. it does not start with C1; or that,
2. it does not end with an accepting configuration; or that,
3. there is an i such that Ci does not properly yield Ci+1.
i.e., there is a PDA that can recognize the complement of L. We can

convert this PDA to some CFG G. Now we can give a Turing
Machine for ATM as follows:

S=“On input <M, x> where M is a TM and x a string:
1. Construct the CFG G from M and x to recognize L.
2. Run N (our decision proocdure for ALLCFG) on <G>
3. If N rejects, accept; if N accepts, reject.”

Post Correspondence Problem

• We now are going to show that there are problems other than
problems for machines which are undecidable.

• We are going to consider problems involving dominos. These are pairs
of strings [s|t].

• Given a set of dominoes {[s1|t1], …[sk|tk]} we want to know if we can
arrange a subset of them (we allow repeats) so that
si_1,..si_j = ti_1,..ti_j. This is called a match and the whole problem is
called Post’s Correspondence Problem (PCP).

• For example, given {[b|ca], [a|ab], [ca|a], [abc|c]}, the following is a
match [a|ab][b|ca][ca|a][a|ab][abc|c].

• We can associate a language to this problem as:
PCP = {<P> | P is an instance of Post’s Correspondence Problem with a

match}

