LaTeX, automata,computability, and notation

CS154

Chris Pollett
Jan. 25, 2006.

Outline

- What is LaTeX?
- Automata, Computability, and Complexity
- Mathematical Notation and Terminology

What is LaTeX?

- LaTeX is a markup language which can be used to specify how to typeset a document.
- It is used to prepare papers containing mathematical notation for publication.
- Most papers in theoretical computer science are written in LaTeX.

$\%$ create some commands of my own with people's names with accents
\newcommand $\{\backslash \mathrm{Hastad}\}\{\mathrm{H}\{\backslash \mathrm{aa}\}$ stad $\}$
\newcommand $\{\backslash$ Pudlak $\}\{$ Pudll' $\{a\} k\}$
\% define the title
lauthor\{C. Pollett\}

\title\{Simple Document\}

Vbegin\{document\}
\% generates the title
Imaketitle

\section\{This is a section title\}

Here is the first paragraph to be typeset by $\backslash \mathrm{LaTeX}\}$.
Notice if I skip a line it starts a new paragraph. Backslash is used to escape special characters
like the dollar sign '
\$'. A backslash is also used to begin a $\backslash \operatorname{LaTeX}\}$ command.
For instance: one could write a greek letter \$lalpha\$. Notice we explicit left and right quotes. Double quotes
are made using pairs of single quote "'". The dollar
sign is used to start an inline math string. For example,
$\$\left(\mathrm{a} _\mathrm{i}\right)^{\wedge}\left\{2^{\wedge} 2\right\} \$$. Simple displayed equations can be writen by enclosing the equation in " $\$ \$ 1 \$$ '. For example,
\$\$\sum^n_\{i=1\} $2^{\wedge}{ }^{\wedge} . \$ \$$
Notice braces are used to enclose inputs to a $\backslash \operatorname{LaTeX}\}$ command. Here's an example of using user defined commands:
\backslash Hastad, \Pudlak.

\section\{My second Section\}

Vldots $\}$ as Razborv~\cite\{razborov95a\} said.
lbegin\{thebibliography\}\{25\}
bibitem\{razborov95a\}
A.A. Razborov.

Inewblock Lower bounds for propositional proofs and independence results in bounded arithmetic.
\newblock In \{lem Proceedings of 20th International Symposium on the
Mathematical Foundations of Computer Science\}, page 105. Springer-Verlag, 1995.
lend\{thebibliography\}
lend\{document $\}$

How to get/compile LaTeX

- Links to obtaining LaTeX can be obtained off the class page.
- There are also various GUI front ends which can be used to create a LaTeX file. WinEdt (Windows), TeXShop (for Mac).
- From the command line one can compile a LaTeX document using a command like:

$$
\begin{aligned}
& \text { latex document.tex (produces a dvi file) } \\
& \text { pdflatex document.tex (produces a pdf file) }
\end{aligned}
$$

- This assumes you have set up the paths to these commands.
- Once compiled you can view the file with a program like yap for dvi files or with acrobat for pdf files.

What is automata theory?

- Automata theory deals with the definitions and properties of mathematical models of computation.
- Two models we will be interested in are finite automata and context-free grammars.
- These models are of interest because the strings that can be recognized by these models can be recognized very efficiently on a real computer.
- This is useful for compilers and string matching.
- One the web language, XML, is essentially a language for specifying context free grammars.

What is computability theory?

- It is the study of what it is in principle possible to do on a computer.
- It is also the study of what it means to compute something.
- It was developed in the first half of the twentieth century by people like Godel, Turing, Church, etc.

Mathematical Notions and Terminology

- In order to begin learning about automata theory and computability we need to first fix some common notations as well as learn about various methods of proof.

Sets

- A set is a group of objects represented together as a unit. $\{7,21,57\}$-- the set containing the number $7,21,57$
$\{\},\{a\}$, apple $\}-$ set containing the empty set, the set $\{a\}$, and an apple.
- We use \in and \notin to mean element of and not element of. For example,

$$
7 \in\{7,21,57\}, 5 \notin\{7,21,57\}
$$

- The symbol \subseteq means subset of. $\mathrm{A} \subseteq$ B means each element of A is an element of B. For example, $\{7,21\} \subseteq\{3,7,5,21,82\}$

More sets

- Some sets contain unboundedly many objects in them. These are called infinite sets.
Natural Numbers $\{0,1,2,3,4,5, \ldots\}$ \mathbb{N}

Integer Numbers $\{\ldots,-2,-1,0,1,2, \ldots\}$

\mathbb{Z}

- The set which doesn't have any elements in it is called the empty set and is denoted by either $\}$ or \varnothing.

