
More Reducibility

CS154
Chris Pollett

Apr 24, 2006.

Outline

• Midterm II
• Reductions via Computation Histories
• Post Correspondence Problem

Midterm II
• Since the midterm scores were low, I have decided to give students an

opportunity to try to recoup some of the points they lost.
• To get points back, on separate sheets of paper correctly work out each of the

problems from the midterm.
• When you have done this, come to my office hours, with your original test,

together with the corrected solutions.
• I will on the spot make up some questions about your corrected solutions.
• Depending on how well these are answered, I will give up to half credit back

on all the points you lost on the midterm.
• For instance, if your score was 6 and you do the above and correctly answer

my question then you could get (15-6)/2 = 9/2 = 4.5 points added to your
score.

• To facilitate everyone getting the opportunity to get points back I will have
extra office hours, this Friday, April 28 and Friday, May 5 from 1-3pm.

• May 5 is the last day to try to recoup these points.

Reductions via Computation
Histories

• Consider the following language:
R := {<w,M, x> | w is the code of a sequence of

configurations, each configuration yielding the next
according to the transition table of TM M on input x.
Further, the last configuration is accepting.}

• This language is decidable.
• Notice ATM := {<M, x> | ∃w <w,M, x> ∈ R }.
• The string w in the above can be viewed as a

computation history.
• Such histories are often useful in doing reductions

from one problem to another.

Formal Definition of a
Computation History.

• Let M be a TM and x an input string.
• An accepting computation history for M on x is

a sequence of configurations C1,.., Ck, where C1 is
the start configuration of M on x, Ck is an
accepting configuration of M, and each Ci legally
follows from Ci-1 according to the rules of M.

• A rejecting computation history for M is defined
similarly, except that Ck is a rejecting
configuration.

Linear Bounded Automata

• We will next work towards using Computation
Histories to give undecidability proofs.

• Our first example will involve a new machine
model which has strength between a PDA and a
TM.

• A linear bounded automata (LBA) is a restricted
type of TM wherein the tape head isn’t permitted
to move off the portion of the tape containing the
input.

• If an LBA tries to move off this part of the tape to
the right, the tape head stays where it is.

Strength of LBAs

• One can verify that each of the TMs we gave for
the languages ADFA, ACFG, EDFA, and ECFG are
either LBAs or easily modified into LBAs.

• For example, ECFG involved marking each
terminal, then marking a variable A if it appear in
a A--> B1…Bn and the Bi’s had already been
marked. Finally, one checks if the start variable
has been marked.

• This marking can be done without using any more
tape squares so the above can be done by an LBA.

A Useful Lemma about LBAs

Lemma. Let M be an LBA with q states and g
symbols in the tape alphabet. There are exactly
qngn distinct configurations of M for a tape of
length n.

Proof. A configuration consists of the state of the
control of the LBA, the position of the tape head,
and the contents of the tape. So there are q
possibilities for the state, the head can be in one of
at most n positions, each of the n tapes squares
could have one of g symbols written in it (so gn

possibilities). All together this gives, qngn.

Decidability and LBAs

Theorem. ALBA is decidable.
Proof. The algorithm that decides ALBA is as follows:

L=“On input <M, w>, where M is an LBA and w
is a string:

1. Simulate M on w for qngn steps or until it halts.
2. If M has halted, accept if it accepted; and reject if it

rejected. If it has not halted reject.”

LBAs and Undecidability
• In contrast to the last theorem above, not all problems about LBAs

are decidable:
Theorem ELBA is undecidable.
Proof. The reduction is from ATM. We show if ELBA is decidable then ATM

also would be decidable. Let L={w | w is a string of the form
C1#C2..#Ck given a legal accepting computation history of M on
input x}. One can show that L can be recognized by an LBA; let’s
call it B. Further, if L is empty, <M, x> is not in ATM. So if ELBA
were decidable the following would be a decision procedure for
ATM:
S= “On input <M,w>, where M is a TM and w is a string:

1. Construct LBA B from M on w as described in the proof idea.
2. Run R on input .
3. If R rejects, accept; if R accepts, reject.”

