More Reducibility

CS154
Chris Pollett
Apr 24, 2006.



Outline

e Midterm II
* Reductions via Computation Histories

e Post Correspondence Problem



Midterm 11

Since the midterm scores were low, I have decided to give students an
opportunity to try to recoup some of the points they lost.

To get points back, on separate sheets of paper correctly work out each of the
problems from the midterm.

When you have done this, come to my office hours, with your original test,
together with the corrected solutions.

I will on the spot make up some questions about your corrected solutions.

Depending on how well these are answered, I will give up to half credit back
on all the points you lost on the midterm.

For instance, if your score was 6 and you do the above and correctly answer
my question then you could get (15-6)/2 = 9/2 = 4.5 points added to your
score.

To facilitate everyone getting the opportunity to get points back I will have
extra office hours, this Friday, April 28 and Friday, May 5 from 1-3pm.

May 35 is the last day to try to recoup these points.



Reductions via Computation
Histories

Consider the following language:

R = {<w,M, x> 1w 1s the code of a sequence of
configurations, each configuration yielding the next
according to the transition table of TM M on input x.
Further, the last configuration is accepting. }

This language 1s decidable.

Notice Ay = {<M, x> 13w <w,M, x> ER }.
The string w in the above can be viewed as a
computation history.

Such histories are often useful in doing reductions
from one problem to another.



Formal Definition of a
Computation History.

e Let M beaTM and x an input string.

* An accepting computation history for M on x is
a sequence of configurations C,,.., C,, where C; 1s
the start configuration of M on x, C, 1s an
accepting configuration of M, and each C, legally
follows from C,_; according to the rules of M.

e A rejecting computation history for M is defined
similarly, except that C, is a rejecting
configuration.



[.inear Bounded Automata

We will next work towards using Computation
Histories to give undecidability proofs.

Our first example will involve a new machine
model which has strength between a PDA and a
TM.

A linear bounded automata (LBA) is a restricted
type of TM wherein the tape head 1sn’t permitted
to move off the portion of the tape containing the
input.

If an LBA tries to move off this part of the tape to
the right, the tape head stays where it 1s.



Strength of LBAS

* One can verify that each of the TMs we gave for
the languages Apga, Acpg, Eppa> and Eqpg are
either LBAs or easily modified into LBAs.

e For example, E-pg iInvolved marking each
terminal, then marking a variable A if it appear in
a A--> B,...B, and the B,’s had already been
marked. Finally, one checks if the start variable
has been marked.

e This marking can be done without using any more
tape squares so the above can be done by an LBA.



A Useful Lemma about LBAs

Lemma. Let M be an LBA with ¢ states and g
symbols 1n the tape alphabet. There are exactly
gng" distinct configurations of M for a tape of
length n.

Proof. A configuration consists of the state of the
control of the LBA, the position of the tape head,
and the contents of the tape. So there are ¢
possibilities for the state, the head can be in one of
at most n positions, each of the n tapes squares
could have one of g symbols written in it (so g”
possibilities). All together this gives, gng”.



Decidability and LBAs

Theorem. A, ;, 1s decidable.

Proof. The algorithm that decides A, g, 1s as follows:
L="On 1nput <M, w>, where M 1s an LBA and w
1S a string:

1. Simulate M on w for gng” steps or until it halts.

2. If M has halted, accept if it accepted; and reject if it
rejected. If it has not halted reject.”



LLBAs and Undecidability

. In contrast to the last theorem above, not all problems about LBAs
are decidable:
Theorem E| ;, 1s undecidable.

Proof. The reduction is from Ap,,. We show if E, ;, 1s decidable then A,
also would be decidable. Let L={w | w is a string of the form
C #C,..#C, given a legal accepting computation history of M on
input x}. One can show that L can be recognized by an LBA; let’s

call it B. Further, if L is empty, <M, x>1s not in Ap,;. So if E| 5,
were decidable the following would be a decision procedure for

Anv
S=“On input <M,w>, where M 1s a TM and w 1is a string:
1. Construct LBA B from M on w as described in the proof idea.

2. Run R on input <B>.
3. If Rrejects, accept; if R accepts, reject.”



