
NFAs and Myhill-Nerode

CS154
Chris Pollett

Feb. 22, 2006.

Outline

• Bonus Questions
• Equivalence with Finite Automata
• Myhill-Nerode Theorem.

Bonus Questions
• These questions are open to anybody.
• I will only accept solutions up to the class day after the

second midterm.
• The points you receive from doing them can be added to

your midterm score.
• You can do either problem or both. Your midterm score

can be raised to a maximum of 15pts.
• To receive points on the bonus problems you must come

see me during my office hours or after class and demo
your code.

• I will ask you questions and review your code to determine
how much your code is worth.

Bonus Question I (page1)

Problem 1 (2pts). Write a regular expression to
NFA program in Java called rex2nfa. This should
be run from the command line with a line like:

java rex2nfa regular_expression
Here a regular_expression is built up out of: the

lower case alphabet symbols: a,b,c,…,z; 0 -empty
set; E -empty string; (rex1.rex2) -- concatenation;
(rex1 U rex2) --union; and (rex1)* -- star.

The output should be a sequence of rows of the form
state; symbol > state

Bonus Question I (page2)

• state - of the form A followed by some string of
digits (for instance, A02345) or R followed by
some string of digits (for example, R99).

• The former are supposed to accept state the latter
are reject states.

• Symbol is supposed to be either an alphabet
symbol or E for the empty string.

• The first state listed in the first row output is
supposed to be the start state.

Bonus Question II (page1)
Problem 2(3pts). Write an NFA to DFA program in

Java called nfa2dfa. This should be run from the
command line with a line like:

java nfa2dfa filename string
Here filename is the name of a file containing lines

of NFA instructions in the format of Problem1;
string is an string that the output DFA will then try
to scan and either accept or reject.

Your program should output a sequence of rows for
the DFA, then skip a line and output accept or
reject based on whether the original NFA would
have accepted or rejected that string.

Bonus Question II (page2)

The format of the output rows should be:
seq_of_states1; symbol > seq_of_states2

By a sequence of states, I mean a comma separated
list of states where states are in the format of
Problem 1.

Again, the first row should contain the start state of
the DFA. I only want you to output rows which
are reachable from this start state.

Proof that regular implies the
language of some regular

expression
• We will again split the proof into two parts:

– We first define a new kind of finite automata called a generalized
nondeterministic finite automata (GNFA) and show how to convert
any DFA into a GNFA.

– Then we show how to convert any GNFA into a regular
expression.

• To begin we define a GNFA to be an NFA where we allow transition
arrows to have any regular expression as labels:

• The transition function δ now takes a pair of states q,r and outputs a
regular expression, R. The intended meaning is in state q reading a
substring of the input of form R we transition to state r.

a*b

Converting DFAs to GNFAs
• We will be interested in GNFAs that have the following special form:

– The start state has transition arrows to every other state but no
arrows coming in from other states.

– There is a single accept state, and it has arrows coming in from
every other state but no arrows going to any other state.

– Except for the start and accepts state, one arrow goes from from
every state to every other state and also from each state to itself.

• To convert a DFA into a GNFA, we add a new start state with and ε
arrow to the old start state and a new accept state with ε arrows from
the old accept states.

• If any arrows have multiple labels (or if we have two or more arrows
between the same two states) we replace each with a single label
whose label is the union labels of the these arrows.

• Finally, we add arrows with labels ∅ between states which had no
labels so as to satisfy the remaining conditions of our special form.

Converting GNFAs to Regular
expressions

• Our conversion above gives a GNFA with k >= 2 states.
• If k > 2, we will construct an equivalent GNFA with k-1 states.
• To do this we pick some state qrip other than the start or accept state,

and we will rip it out of the machine.
• To compensate for the loss of this state, for any pair of states qi, qj. in

this new machine we replace δ(qi, qj) with:
δ’(qi, qj) =(R1)(R2)*(R3)∪(R4)
where δ(qi, qrip) = R1; δ(qrip, qrip) = R2; δ(qrip, qj) = R3; δ(qi, qj) = R4

• This machine will be equivalent to the old machine.
• Further, by repeatedly ripping out states in this fashion we can get

down to the 2-state machine with just a regular expression on the
single transition between these two states.

• This regular expression will be equivalent to the original NFA.

Making DFAs as Small as Possible

• We have given a process for going from
regular expressions (a widely used language
for pattern matching) to DFAs.

• We would now like to optimize out DFAs
and make them as small as possible.

• The Myhill-Nerode Theorem allows us to
do this.

Pairwise Distinguishability

Definition: (1) We say two strings x,y are pairwise
distinguishable by L, if some string z exists such
that exactly one of xz or yz is in L. (2) We say two
strings x,y are pairwise indistinguishable by L, if
all strings z both of xz and yz is in L or both are
not in L.

Fact: Pairwise Indistinguishability is an equivalence
relation on strings.

Definition: Let the index of L be the number of
equivalence classes of L with respect to pairwise
indistinguishability.

Intuition
• Suppose we have a DFA for some regular language. We pick two

states in this DFA, say q1 and q2 and we ask whether we could
collapse them into one state or not.

• If it is the case that given any string z, that when we are state q1 when
we begin reading z we do exactly the same as far as
accepting/rejecting as we would do if we were in state q2 when we
began reading a z, then we could collapse these states into one.

• Call two states q1 and q2 distinguishable if there is some string z
which such that beginning in state q1 reading a z we reject; whereas, in
state q2 reading a z we accept or vice-versa.

• Similarly, we can define state indistinguishability. This is also an
equivalence relation with equivalence classes contained in those of
language indistinguishability.

• So indistinguishability is measuring whether or not we can collapse
states.

Myhill-Nerode Theorem (start)

• A language is regular iff it is of finite index.
Proof: Give any DFA for a language L, state

indistinguishability for this DFA will have more
equivalence classes then language
indistinguishability for L. So if the number of
language indistinguishable equivalence classes is
not finite, the DFA can’t have a finite number of
states giving a contradiction.

