
Reducibility

CS154
Chris Pollett

Apr 19, 2006.

Outline

• Reducibility

Reducibility
• We next consider what other problem are undecidable.
• Our approach to showing languages are undecidable will be to use a

notion called reducibility.
• A reduction r is a mapping from possible inputs IA to a problem A,

instances of A, to instances of problem B, with the property that IA ∈ A
if and only if r(IA) ∈ B.

• If the reduction can be computed by a TM, i.e., a Turing reduction,
then if B is decidable then A will be too. Conversely, if A is not
decidable, then B also won’t be decidable.

Example
• Let HALTTM = {<M,w> | M is a TM and M halts on input w}.
Theorem. HALTTM is undecidable.
Proof. Suppose R decides HALTTM . From R we can construct a machine

S which decides ATM as follows:
S =“ On input <M, w> an encoding of a TM M and a string w:

1. Run TM R on input <M, w>
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, then accept; if M has rejected, reject.”
So if R works S will decide ATM. Therefore R can exist.

Another Example
• Using reducibility is the most common way to show a language is

undecidable.
• As another example, consider the language:

ETM={<M> | M is a TM and L(M)=∅}.
Theorem. ETM is undecidable.
Proof. First consider the following machine:

M1= “ On input x:
1. If x ≠ w, reject.
2. If x = w, run M on input w and accept if M does.”

This machine is a modification of M and it accepts at most one input w, and
it only accepts this if M does. Now suppose machine R decided ETM. Then
we could build the following machine to decide ATM giving a contradiction:
S = “On input <M,w>, an encoding of a TM M and a string w:

1. Use the description of M and w to make a corresponding machine
M1 as above.

2. Run R on input <M1>
3. If R accepts, reject; if R rejects, accept.”

A Problem about Regular
Languages

• Even problems about regular languages can sometimes be hard. Let:
RegularTM = {<M> | M is a TM and L(M) is a regular language}.

Theorem. RegularTM is undecidable.
Proof. Suppose R decides RegularTM. Then the following machine

decides ATM:
S=“On input <M,w>, where M is a TM and w is a string:

1. Construct the following machine M2:
M2 = “On input x:
• If x has the form 0n1n, accept.
• If x does not have this form, run M on input w and accept if

M accepts w.”
// So if M accepts w, then M2 accepts all strings; otherwise, M2

only accepts strings of the form 0n1n.
2. Run R on input <M2>.
3. If R accepts, accept; otherwise, if R rejects, reject.”

Using reducibility from
languages other than ATM

• We don’t need to only use ATM now to show a language is
undecidable.

• For instance, if some ETM reduces to some language A, then A will
be undecidable. For example, let
EQTM={<M1, M2> | M1 and M2 are TMs and L(M1) = L(M2) }

Theorem. EQTM is undecidable.
Proof. Suppose R decides EQTM , then we can build an S solving ETM as

follows (hence, giving a contradiction):
S=“On input <M>, where M is a TM:

1. Run R on <M, M1>, where M1 is the machine that rejects all
inputs.

2. If R accepts, accept; otherwise if R rejects, reject.”

