Reducibility

CS154 Chris Pollett Apr 19, 2006.

Outline

• Reducibility

Reducibility

- We next consider what other problem are undecidable.
- Our approach to showing languages are undecidable will be to use a notion called **reducibility**.
- A reduction r is a mapping from possible inputs I_A to a problem A, instances of A, to instances of problem B, with the property that $I_A \in A$ if and only if $r(I_A) \in B$.
- If the reduction can be computed by a TM, i.e., a **Turing reduction**, then if B is decidable then A will be too. Conversely, if A is not decidable, then B also won't be decidable.

Example

- Let $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$. **Theorem.** $HALT_{TM}$ is undecidable.
- **Proof.** Suppose *R* decides $HALT_{TM}$. From *R* we can construct a machine *S* which decides A_{TM} as follows:
 - *S* =" On input *<M*, *w>* an encoding of a TM *M* and a string w:
 - 1. Run TM R on input $\langle M, w \rangle$
 - 2. If *R* rejects, reject.
 - 3. If *R* accepts, simulate *M* on *w* until it halts.
 - 4. If *M* has accepted, then accept; if *M* has rejected, reject."
 - So if *R* works *S* will decide A_{TM} . Therefore *R* can exist.

Another Example

- Using reducibility is the most common way to show a language is undecidable.
- As another example, consider the language: $E_{TM} = \{ <M > | M \text{ is a TM and } L(M) = \emptyset \}.$

Theorem. E_{TM} is undecidable.

Proof. First consider the following machine:

 $M_1 =$ "On input *x*:

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."

This machine is a modification of *M* and it accepts at most one input *w*, and it only accepts this if *M* does. Now suppose machine R decided E_{TM} . Then we could build the following machine to decide A_{TM} giving a contradiction: S = "On input <*M*,*w*>, an encoding of a TM *M* and a string *w*:

- 1. Use the description of M and w to make a corresponding machine M_1 as above.
- 2. Run *R* on input $\langle M_1 \rangle$
- 3. If *R* accepts, reject; if *R* rejects, accept."

A Problem about Regular Languages

• Even problems about regular languages can sometimes be hard. Let: Regular_{TM} = $\{ <M > | M \text{ is a TM and } L(M) \text{ is a regular language} \}.$

Theorem. Regular_{TM} is undecidable.

Proof. Suppose R decides $\text{Regular}_{\text{TM}}$. Then the following machine decides A_{TM} :

S="On input *<M*,*w>*, where *M* is a TM and *w* is a string:

1. Construct the following machine M_2 :

 M_2 = "On input *x*:

- If x has the form $0^n 1^n$, accept.
- If *x* does not have this form, run *M* on input *w* and accept if *M* accepts *w*."
- // So if *M* accepts *w*, then M_2 accepts all strings; otherwise, M_2 only accepts strings of the form $0^{n}1^{n}$.
- 2. Run *R* on input $\langle M_2 \rangle$.
- 3. If *R* accepts, accept; otherwise, if *R* rejects, reject."

Using reducibility from languages other than A_{TM}

- We don't need to only use A_{TM} now to show a language is undecidable.
- For instance, if some E_{TM} reduces to some language A, then A will be undecidable. For example, let $EQ_{TM} = \{ <M_1, M_2 > | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem. EQ_{TM} is undecidable.

Proof. Suppose R decides EQ_{TM} , then we can build an S solving E_{TM} as follows (hence, giving a contradiction):

S="On input <M>, where M is a TM:

- 1. Run R on <M, M₁>, where M₁ is the machine that rejects all inputs.
- 2. If R accepts, accept; otherwise if R rejects, reject."