Undecidable Languages

CS154 Chris Pollett Apr 17, 2006.

Outline

- Diagonalizing Languages
- The Halting Problem

Diagonalizing Languages

• Another corollary to the Diagonalization Theorem of last lecture is the following:

Corollary. Some languages are not Turing Recognizable.

Proof. Last lecture, we argued the interval (0,1) is uncountable. For the same reason the set of infinite strings over $\{0,1\}$ is uncountable. We can view such a sequence (0,1, 0, 0 ...) as coding a language over some alphabet. Put a 1 in a position if the *i*th string is in the language and a 0 otherwise. On the other hand, each encoding <M> of a Turing Machine is a finite string over a finite alphabet and we argued last day that the set of finite strings over an alphabet is countable.

The Halting Problem is Undecidable

- **Theorem.** The language $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable.
- **Proof.** Suppose *H* is a decider for A_{TM} . Fixing *M* and then listing out encoding of TM's in lex order $\langle M_0 \rangle$, $\langle M_1 \rangle$,... we can view H as giving an infinite binary sequence where we have a 1 in the *i*th slot if $\langle M_i \rangle$ is in *M*'s language and a 0 otherwise. We will argue if *H* us a decider A_{TM} then there is a decider for the complement of the diagonal of this map. Here's how we do this, let D be the machine:

D="On input <M>, where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. Output the opposite of what *H* outputs; that is, if *H* accepts, then reject. If *H* rejects then accept."
- Now consider *D*(*<D>*).Machine D accepts if and only if *H* on input *<*D, *<*D> rejects. But *H* on input *<*D, *<*D>> reject means that D did not accept input *<*D>. This is contradictory. A similar argument can be made about if D rejects *<*D>. So *H* must not exist.

A Specific Non-Turing Recognizable Language I

- Our Corollary on the third slide only shows some Turing unrecognizable language must exist -- it doesn't give us an example.
- We'll use the next theorem to give an example.
- First, call a language **co-Turing recognizable** if its complement is Turing recognized.
- **Theorem.** A language is decidable iff it is Turing-recognized and co-Turing recognized.
- **Proof.** Suppose L is decidable by M. Then it is also Turing Recognized. Further, let \overline{M} be the machine which reject when M accepts and accepts when M rejects. Then \overline{M} recognizes the complement of L. On the other hand, suppose L' is Turing recognized by M' and co-Turing recognized by M''. Then Let D be the machines which on input wsimulates each of M' and M'' first for 1 step, then for 2 steps, etc. If M' ever accepts the D accepts and if M'' ever accepts then D rejects. Since a string is either in L' or not, one of these two machines must accept eventually, and so then D will decide that string.

A Specific Non-Turing Recognizable Language II

Corollary. \overline{A}_{TM} is not Turing recognized.

Proof. We proved in an earlier lecture A_{TM} is Turing recognized. So if \overline{A}_{TM} were Turing recognized, then A_{TM} would be decidable giving a contradiction with the halting problem being undecidable.