
Undecidable Languages

CS154
Chris Pollett

Apr 17, 2006.

Outline

• Diagonalizing Languages
• The Halting Problem

Diagonalizing Languages
• Another corollary to the Diagonalization Theorem of last

lecture is the following:
Corollary. Some languages are not Turing Recognizable.
Proof. Last lecture, we argued the interval (0,1) is

uncountable. For the same reason the set of infinite strings
over {0,1} is uncountable. We can view such a sequence
(0,1, 0, 0 ..) as coding a language over some alphabet. Put
a 1 in a position if the ith string is in the language and a 0
otherwise. On the other hand, each encoding <M> of a
Turing Machine is a finite string over a finite alphabet and
we argued last day that the set of finite strings over an
alphabet is countable.

The Halting Problem is
Undecidable

Theorem. The language ATM={<M,w> | M is a TM and M accepts w} is
undecidable.

Proof. Suppose H is a decider for ATM. Fixing M and then listing out encoding of
TM’s in lex order <M0>, <M1>,.. we can view H as giving an infinite binary
sequence where we have a 1 in the ith slot if <Mi> is in M’s language and a
0 otherwise. We will argue if H us a decider ATM then there is a decider for
the complement of the diagonal of this map. Here’s how we do this, let D
be the machine:
D=“On input <M>, where M is a TM:

1. Run H on input <M, <M>>
2. Output the opposite of what H outputs; that is, if H accepts, then

reject. If H rejects then accept.”
 Now consider D(<D>).Machine D accepts if and only if H on input <D,

<D> rejects. But H on input <D, <D>> reject means that D did not
accept input <D>. This is contradictory. A similar argument can be
made about if D rejects <D>. So H must not exist.

A Specific Non-Turing
Recognizable Language I

• Our Corollary on the third slide only shows some Turing
unrecognizable language must exist -- it doesn’t give us an example.

• We’ll use the next theorem to give an example.
• First, call a language co-Turing recognizable if its complement is

Turing recognized.
Theorem. A language is decidable iff it is Turing-recognized and co-

Turing recognized.
Proof. Suppose L is decidable by M. Then it is also Turing Recognized.

Further, let M be the machine which reject when M accepts and
accepts when M rejects. Then M recognizes the complement of L. On
the other hand, suppose L′ is Turing recognized by M′ and co-Turing
recognized by M′′. Then Let D be the machines which on input w
simulates each of M′ and M′′ first for 1 step, then for 2 steps, etc. If M′
ever accepts the D accepts and if M′′ ever accepts then D rejects.
Since a string is either in L′ or not, one of these two machines must
accept eventually, and so then D will decide that string.

A Specific Non-Turing
Recognizable Language II

Corollary. ATM is not Turing recognized.
Proof. We proved in an earlier lecture ATM is

Turing recognized. So if ATM were Turing
recognized, then ATM would be decidable
giving a contradiction with the halting
problem being undecidable.

