Turing Machines

CS154 Chris Pollett Mar 13, 2006.

Outline

- Formal Definition of Turing Machine
- Example

Formal Definition of Turing Machine

- A **Turing Machine** (TM)s a 7-tuple (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}) where
 - 1. Q is a finite set of states
 - 2. $\Sigma \subseteq \Gamma$ are respectively the input and tape alphabets. Γ contains a space symbol '_' not in Σ .
 - 3. $\delta: Q \ge Q \ge C \ge Q \ge C \ge Q \ge C \ge C$ is the transition function.
 - 4. $q_0 \in Q$ is the start state.
 - 5. $q_{accept} \in Q$ is the accept state.
 - 6. $q_{reject} \in Q$ is the reject state.
- A TM receives its input $w=w_1w_2 \dots w_n$ on the leftmost n square of its tape. The rest of the tape squares have the blank symbol. The TM's tape head begins on the leftmost square. Once M starts, it follows the rules prescribed by the transition function. A rule
 - (q,a)-->(q',b, L) says in state q reading an 'a' go to state q', write a 'b' in the current square then move the tape head left. (q,a)-->(q',b, R) would say the same thing except moves the tape head right.
- If the machine ever tries to move off the left side of the tape it, the machine stays in the same place even if the transition says L.
- Computation continues until the machine either enters the accept or reject state at which point the input is either accepted or rejected.

Configurations, Yields

- To specify the state of a computation at a given time (i.e., a **configuration**) one needs to specify the tape contents, the head position, and the current state.
- To do this it suffices to consider only the non-blank square.
- One can use the notation u q v to represent this information. Here u is a string that represents the contents of the tape to the left of the tape head, q is the current state and v is a string consisting of what is under the tape head followed by the non-blank symbols to the right of the tape head.
- For example, one might have $0011q_71100$. This says the tape contents are 00111100, the machine is in state q_7 , and it is read the third 1 in this string.
- We say configuration C yields C' if the TM can legally go from C to C' in one step. For instance, ua q bv yields u q' acv if δ(q,b) =(q', c, L).

Accept, Reject, Recognize, Decide

- The start configuration of M on input w is the configuration q_0 w.
- An **accepting configuration** is one in which the state of the configuration is q_{accept} .
- A rejecting configuration is one in which the state of the configuration is q_{reject} .
- Any accepting or rejecting configuration is a **halting configuration** -- one after which the computation halts.
- A Turing machine M **accepts** w if a there is a sequence of configurations $C_1, C_2, ..., C_k$ such that C_1 is the start configuration of M on w; for i between 1 and k-1, C_i yields C_{i+1} and C_k is an accept configuration.
- The collection of strings M accepts is denoted L(M) and is called the **language recognized by M**.
- A language is **Turing-recognizable** if some TM recognizes it.
- A language is called **decidable** if there is some TM which halts on all inputs which recognizes it.

Example

- Consider the language $A = \{0^{2^n} | n \ge 0\}$
- Here is a high level description of a machine M recognizing it:

On input w:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, accept.
- 3. If in stage 1 the tape contained more than a single 0 and the number of 0's was odd, reject.
- 4. Return the head to the left hand side of the tape.
- 5. Go to stage 1.
- We now try to define M formally.

More on the Example.

- Let $Q = \{q1, q2, q3, q4, q5\}$
- Let $\Sigma = \{0\}$,
- Let $\Gamma = \{0, x, _\}$
- Let the start, accept, and reject states be $q_1, q_{accept}, q_{reject}$.
- The diagram below defines the transition function:

Here the label on the edge between q1 and q2 corresponds to the transition (q1, 0) --> (q2, _, R). The label on the edge between q3 and q4 corresponds to the transition (q3, _) --> (q5, _, L).

Yet More on the Example

• The machine above on the input 0000 would compute as follows:

$q_1 0000$	_q ₅ x0x_	_xq ₅ xx_
$_{q_2}000$	$q_5_x0x_$	_q ₅ xxx_
_xq ₃ 00	$_q_2 x 0 x_$	q ₅ _xxx_
_x0q ₄ 0	$_xq_20x_$	$_q_2 xxx_$
_x0xq ₃ _	_xxq ₃ x_	_xq ₂ xx_
$x0q_5x_1$	_xxxq ₃ _	_xxq ₂ x_
xq ₅ 0x	_xxq ₅ x_	_xxxq ₂ _
		VVV O

_XXX_q_{accept}