Turing Machines

CS154

Chris Pollett

Mar 13, 2006.

Outline

- Formal Definition of Turing Machine
- Example

Formal Definition of Turing Machine

- A Turing Machine (TM)s a 7-tuple (Q, $\left.\Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\text {accept }}, \mathrm{q}_{\text {reject }}\right)$ where

1. Q is a finite set of states
2. $\quad \Sigma \subseteq \Gamma$ are respectively the input and tape alphabets. Γ contains a space symbol ' ${ }^{\prime}$, not in Σ.
3. $\delta: \mathrm{Q} \times \Gamma-->\mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ is the transition function.
4. $\quad \mathrm{q}_{0} \in \mathrm{Q}$ is the start state.
5. $\quad \mathrm{q}_{\text {accept }} \in \mathrm{Q}$ is the accept state.
6. $\quad \mathrm{q}_{\text {reject }} \in \mathrm{Q}$ is the reject state.

- A TM receives its input $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}$. on the leftmost n square of its tape. The rest of the tape squares have the blank symbol. The TM's tape head begins on the leftmost square. Once M starts, it follows the rules prescribed by the transition function. A rule
$(\mathrm{q}, \mathrm{a})-->(\mathrm{q}$ ', $\mathrm{b}, \mathrm{L})$ says in state q reading an 'a' go to state q ', write a ' b ' in the current square then move the tape head left. $(q, a)-->\left(q^{\prime}, b, R\right)$ would say the same thing except moves the tape head right.
- If the machine ever tries to move off the left side of the tape it, the machine stays in the same place even if the transition says L.
- Computation continues until the machine either enters the accept or reject state at which point the input is either accepted or rejected.

Configurations, Yields

- To specify the state of a computation at a given time (i.e., a configuration) one needs to specify the tape contents, the head position, and the current state.
- To do this it suffices to consider only the non-blank square.
- One can use the notation $u q v$ to represent this information. Here u is a string that represents the contents of the tape to the left of the tape head, q is the current state and v is a string consisting of what is under the tape head followed by the non-blank symbols to the right of the tape head.
- For example, one might have $0011 \mathrm{q}_{7} 1100$. This says the tape contents are 00111100 , the machine is in state q_{7}, and it is read the third 1 in this string.
- We say configuration C yields C^{\prime} if the TM can legally go from C to C^{\prime} in one step. For instance, ua q bv yields $u q^{\prime}$ acv if $\delta(q, b)=\left(q^{\prime}, c\right.$, L).

Accept, Reject, Recognize, Decide

- The start configuration of M on input w is the configuration $q_{0} w$.
- An accepting configuration is one in which the state of the configuration is $q_{\text {accept }}$.
- A rejecting configuration is one in which the state of the configuration is $\mathrm{q}_{\text {reject }}$.
- Any accepting or rejecting configuration is a halting configuration -one after which the computation halts.
- A Turing machine M accepts w if a there is a sequence of configurations $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$ such that C_{1} is the start configuration of M on w ; for i between 1 and $\mathrm{k}-1, \mathrm{C}_{\mathrm{i}}$ yields $\mathrm{C}_{\mathrm{i}+1}$ and C_{k} is an accept configuration.
- The collection of strings M accepts is denoted $L(M)$ and is called the language recognized by M.
- A language is Turing-recognizable if some TM recognizes it.
- A language is called decidable if there is some TM which halts on all inputs which recognizes it.

Example

- Consider the language $A=\left\{0^{2^{n}} \mid n \geq 0\right\}$
- Here is a high level description of a machine M recognizing it:
On input w:

1. Sweep left to right across the tape, crossing off every other 0 .
2. If in stage 1 the tape contained a single 0 , accept.
3. If in stage 1 the tape contained more than a single 0 and the number of 0 's was odd, reject.
4. Return the head to the left hand side of the tape.
5. Go to stage 1.

- We now try to define M formally.

More on the Example.

- $\operatorname{Let} \mathrm{Q}=\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \mathrm{q} 4, \mathrm{q} 5\}$
- Let $\Sigma=\{0\}$,
- Let $\Gamma=\left\{0, \mathrm{x},{ }_{\mathrm{C}}\right\}$
- Let the start, accept, and reject states be $\mathrm{q} 1, \mathrm{q}_{\text {accept }}, \mathrm{q}_{\text {reject }}$ -
- The diagram below defines the transition function:

Here the label on the edge between q1 and q2 corresponds to the transition (q1, 0) --> ($\mathrm{q} 2,$, , R). The label on the edge between q3 and q4 corresponds to the transition (q3,_) --> (q5, , L).

Yet More on the Example

- The machine above on the input 0000 would compute as follows:

$$
\begin{aligned}
& \mathrm{q}_{1} 0000 \quad-\mathrm{q}_{5} \mathrm{x} 0 \mathrm{x}_{-} \quad \quad \mathrm{xq}_{5} \mathrm{xx}- \\
& \mathrm{q}_{2} 000 \quad \mathrm{q}_{5-} \mathrm{x} 0 \mathrm{x}_{-} \quad \text { _ } \mathrm{q}_{5} \mathrm{xxx}- \\
& { }_{-} \mathrm{xq}_{3} 00 \quad \mathrm{q}_{2} \mathrm{x} 0 \mathrm{x}_{-} \quad \mathrm{q}_{5-} \mathrm{xxx}- \\
& \quad x 0 q_{4} 0 \quad X_{2} 0 x_{-} \quad-q_{2} x x x_{-} \\
& \text {_x0xq }{ }_{3-} \quad \mathrm{Xxq}_{3} \mathrm{x}_{-} \quad \mathrm{xq}_{2} \mathrm{xx}{ }_{-} \\
& \quad \mathrm{x}^{2} \mathrm{q}_{5} \mathrm{x}_{-} \quad \mathrm{xxxq}_{3-} \quad \quad \mathrm{xxq}_{2} \mathrm{X}_{-} \\
& \mathrm{xq}_{5} 0 \mathrm{x}-\quad \quad \mathrm{xxq}_{5} \mathrm{x}-\quad \quad \mathrm{xxxq}_{2-} \\
& \text { _XXX_q } \text { accept }
\end{aligned}
$$

