
NFAs and Regular Expressions.

CS154
Chris Pollett

Feb. 13, 2006.

Outline

• Closure Properties of NFAs
• Regular Expression
• Equivalence with Finite Automata

Corollary of NFA-DFA
equivalence

• Every DFA is trivially an NFA.
• Last day, we showed given an NFA how to

construct a DFA recognizing the same
language.

• Therefore, we get that a language is regular
if and only if it is recognized by some NFA.

NFA based proofs of Closure
Properties of Regular Languages

• Closure under union

• Closure under concatenation

• Closure under star

N1

N2

N ε

ε

N
ε
ε

N1

N2

N1 N ε

ε

ε

Introduction to Regular
Expressions

• In arithmetic, we can use the operations + and * to build up
expressions such as:
(5 + 3) * 4.

• Similarly we can use the regular operations to build up expressions
describing regular languages.

• For instance, 0(0∪1)* (We use juxtaposition to abbreviate
concatenation: 0ο(0∪1)*).

• This means the language which results from concatenating the
language containing 0 with the language of (0∪1)*. This in turn is the
star of the union of the two languages one containing just 0; the other
containing just 1.

• These kind of expressions are used in many modern programming
languages: Perl, PHP, Java, AWK, GREP,

Formal Definition of a Regular
Expression

• We say that R is a regular expression if R is
1. a for some symbol a in the alphabet ∑,
2. ε
3. ∅
4. (R1 ∪R2) where R1 and R2 are regular expressions
5. (R1 ο R2) where R1 and R2 are regular expressions
6. (R1)* where R1 is a regular expression

• We write R+ as a shorthand for RR*.
• We write L(R) for the language given by the

regular expression

Examples of the Definition

• 0*1 0* = {w | w contains a single 1}
• (01 ∪ 10) = {01, 10}
• (∑∑)* = {w| w is of even length}
• (ε ∪0)(ε ∪1) = {ε, 0, 1, 01}
• 1* ∅ = ∅
• ∅* = {ε}

Equivalence with Finite
Automata

• We want to show that a language is regular
if and only if some regular expression
describes it.

• We will do this in two steps:
– Prove if a language is described by a regular

expression, then it is regular
– Prove if a language is regular, then it is

described by a regular expression.

Proof that regular expression
implies regular

• It suffices to come up with NFAs for the three
languages (1), (2), (3) a couple slides back since
we already know the regular languages are
closed under union, concatenation and *.

1. Let R= a for some a in ∑. Then the following
NFA recognizes the languages contain only a.

2. Let R= ε. Then the following NFA recognizes it:

3. Let R= ∅. Then the following NFA recognizes
it:

a

Proof that regular implies the
language of some regular

expression
• We will again split the proof into two parts:

– We first define a new kind of finite automata called a
generalized nondeterministic finite automata (GNFA)
and show how to convert any DFA into a GNFA.

– Then we show how to convert any GNFA into a regular
expression.

• To begin we define a GNFA to be an NFA where
we allow transition arrows to have any regular
expression as labels:

a*b

Converting DFAs to GFNA
• We will be interested in GNFAs that have the following special form:

– The start state has transition arrows to every other state but no
arrows coming in from other states.

– There is a single accept state, and it has arrows coming in from
every other state but no arrows going to any other state.

– Except for the start and accepts state, one arrow goes from from
every state to every other state and also from each state to itself.

• To convert a DFA into a GNFA, we add a new start state with and ε
arrow to the old start state and a new accept state with ε arrows from
the old accept states.

• If any arrows have multiple labels (or if we have two or more arrows
between the same two states) we replace each with a single label
whose label is the union labels of the these arrows.

• Finally, we add arrows with labels ∅ between states which had no
labels so as to satisfy the remaining conditions of our special form.

