
The Recursion Theorem

CS154
Chris Pollett
May 8, 2006.

Outline

• The Recursion Theorem

Towards The Recursion Theorem
• One interesting property of living things is that they can reproduce –

that is, they can produce “exact” copies of themselves.
• Can machines do this? As a first step:
Lemma. There is a computable function q: ∑* →∑* , where if w is any

string q(w) is the description of a Turing Machine Pw that prints out
w and then halts.

Proof.
Q =“On input w:
1. Construct the following TM Pw.

Pw = “ On any input:
1. Erase the input.
2. Write w on the tape.
3. Halt.”

2. Output < Pw >.”

SELF
• Using Q of the last slide we next describe a machine SELF which ignores

its own input and prints it TM description to the output.
• SELF consists of two parts A and B.
• A runs first and then passes control to B. A is the machine P where B is:

“On input <M>, where M is a portion of a TM:
1. Compute q(<M>).
2. Combine the result with <M> to make a complete TM.
3. Print the description of this TM and halt.”

• So once A is done the tape has on it.
• B then computes q(<M>) = <P> = <A> and concatenates with some

extra state to make this into a whole machine. This give <AB> = <SELF>
back.

• One way to see this construction works is to consider the following English
sentence:

Print the next phrase in quotes twice the second time in quotes: “Print the
next phrase in quotes twice the second time in quotes:”

• B is like the phrase: Print the next phrase in quotes twice the second time
in quotes: ; A is the phrase with quotes around it.

The Recursion Theorem
• We can generalize the above argument to allow machines to compute

with their own descriptions
Theorem. Let T be a TM that computes a function t:∑* x ∑* --> ∑*. There

is a Turing machine R that computes a function
r: ∑* --> ∑*, where for every w,

r(w) = t(<R>, w).
Proof. The proof is like the construction of SELF except now we have

the machine T besides A and B, and R will be a combined machine
ABT. In the current construction A=P′<BT>. Here P′<BT> is like P<BT>
except it prints <BT> after the input and a #. We design a q′ so it looks
for a #, sees the string v that follows it and, and appends <P′<v>> to the
input. So after A runs the tape has w#<BT> on it. Now B applies q′ to
the output of A to get w#<BT><P′<BT>> = w#<BT><A>, and then
reformats this as <<ABT>, w>. It then starts T. Notice <R> = <ABT>.

Applications of the Recursion
Theorem

• The recursion theorem allows one to design TM subroutines of the
form “ obtain your own description”.

• For instance, SELF could be rewritten as:
SELF= “On any input:
1. Obtain, via the recursion theorem, own description <SELF>.
2. Print <SELF>.”

• The obtain your own description statement is implemented by first
writing the machine:

T= “On any input <M, w>:
1. Print <M> and halt.”

• Then the recursion theorem says how to get a machine R which on
input w acts like T on input <R, w>.

More Applications

• We can use the recursion theorem to give an alternative
proof that ATM is undecidable:

• First, suppose ATM were decidable by machine H. Then
consider the machine B:

B=“ On input w:
1. Obtain, via the recursion theorem, own description .
2. Run H on <B, w>.
3. Do the opposite of what H does.”

So running B on input w does the opposite of what H on <B, w> does.
So H can’t decide ATM .

The Fixed-Point Theorem

• A fixed point of a function f is a value x such
that f(x)=x.

Theorem. Let t: ∑* --> ∑* be a computable function. Then
there is a machine F for which L(t(<F>)) = L(F). Here
we are assuming that if a string isn’t a proper TM, then it
describes the empty language.

Proof.
F = “On input w:

1. Obtain via the recursion theorem, own description <F>.
2. Compute t(<F>) to obtain a TM description G.
3. Simulate G on w.”

