
Yet More CFLs; Turing
Machines

CS154
Chris Pollett
Mar 8, 2006.

Outline

• Algorithms for CFGs
• Pumping Lemma for CFLs
• Turing Machines

Introduction to Cocke-Younger-
Kasami (CYK) algorithm (1960)

• This is an O(n3) algorithm to check if a string w is
can be generated by a CFG in Chomsky Normal
Form.

• As cubic algorithms tend to be slow, in practice
people use algorithms based on restricted types of
CFGs with a fixed amount of lookahead. Either
top down LL parsing or bottom-up LR parsing.
These algorithms are based on the PDA model.

• There have been improvements to CYK algorithm
which reduce the run-time slightly below cubic
(n2.8) and to quadratic in the case of an
unambiguous grammar.

The CYK algorithm
On input w= w1w2…wn :

1. If w = ε and S--> ε is a rule accept.
2. For i = 1 to n: [set up the subtring of length 1 case]
3. For each variable A:
4. Test whether A--> b is a rule, where b=wi
5. If so, place A in table(i,i).
6. For l = 2 to n: [Here l is a length of a substring]
7. For i = 1 to n - l + 1: [i is the start of the substring]
8. Let j = i + l - 1, [j is the end of the substring]
9. For k = i to j-1: [k is a place to split substring]
10. For each rule A-->BC
11. If table(i,k) contains B and table(k+1, j) contains C

put A in table(i,j).
12. If S is in table(1,n) accept. Otherwise, reject.

Languages that are not Context
Free

• We can prove languages are not context free by using the
Pumping Lemma for context-free languages:

Pumping Lemma for Context Free Languages: If A is a
context free language, then there is a number p (the
pumping length) where, if s is any string A of length at
least p, then s maybe divided into five pieces s= uvxyz
satisfying the conditions:

1. for each i>=0, uvixyiz is in A.
2. |vy| > 0, and
3. |vxy| <= p.

Example use of the CFL
Pumping Lemma

• Let C = {aibjck | 0 <= i <=j <= k}
• Argue by contradiction. Let p be the pumping length of C and consider the

string s=apbpcp.
• Then s can be written as uvxyz. There are two cases:

1. Both v and y contain only one type of alphabet symbol. So one of a, b,
or c does not appear in v or y. So there are three subcases

a) The a’s do not appear. By the pumping lemma, uv0xy0z= uxz must
be in the language. This string has the same number of a’s but
fewer b’s or c’s so cannot be in C giving a contradiction.

b) The b’s do not appear. Then either a’s or c’s must appear in v and
y. If a’s appear, then uv2xy2z will have more a’s then b’s giving a
contradiction. If c’s appear, then uv0xy0z will have more b’s then
c’s giving a contradiction.

c) The c’s do not appear. Then uv2xy2z will have more a’s or b’s then
c’s giving a contradiction.

2. When either v or y contain more than one symbol uv2xy2z will not
contain the symbols in the right order giving a contradiction.

Proof of the Pumping Lemma for
CFGs.

Let G be a CFG for our context free language A. Let |V| be the number of
variables in G. Let b be the maximum number of symbols on the right
hand side of a rule. So the maximum number of leaves a parse tree of
height d can have is bd. We set the pumping length to p = b|V|+1. So if s
is in A of length bigger than p, its smallest parse tree must be of height
greater than |V|+1. So some variable R must be repeated. So we can do
the following kind of surgeries on the parse tree to show condition 1 of
the pumping lemma:

S R
R

u v x y z

S R

u x zS R
R

u v x y zv x y

R

Condition 2 of the pumping
lemma will hold since if v and y
were the empty string then the
pumped down tree would be a
smaller derivations of s
contradicting our choice of parse
tree. Condition 3 can be
guarenteed by choosing R among
the laset |V|+1 of the longest path
in the tree.

General Models of Computation
• So far we have looked at machines that either have bounded memory or access

to memory limited to stack operations.
• We would like to consider models of computation which correspond to

general purpose computers.
• In 1936, Alan Turing presented such a general model of a computer now

called a Turing Machine.
• In this model, the machine has a finite control and a arbitrarily long tape of

data consisting of squares able to hold one symbol. The machine also has a
read head which can read one square at a time. Initially, this tape is black
except for the n first squares which have the input. The machine in one step is
allowed to read what’s under its tape head, write a new symbol, move left or
right one square and change its state. The machine has special states for
accepting or rejecting.

• The first actual computer developed for code-breaking during World War II
was actually based on his model.

• It turns out this model is actually equivalent to what can be done on modern
computers.

Example
• Let B be the language {w#w | w is a string over 0,1}
• A Turing Machine M that could accept this language might operate

as follows:
On input w:
1. Zig-zag across the tape to the corresponding positions on either

side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found do into the
reject state. If they have the same symbol change the symbol to
a new symbol X.

2. When all the symbols on the left side of the # have been X’d
out, check if there are any more symbols to the right of the #. If
yes reject; if not accept.

