Yet More CFLs; Turing Machines

CS154

Chris Pollett
Mar 8, 2006.

Outline

- Algorithms for CFGs
- Pumping Lemma for CFLs
- Turing Machines

Introduction to Cocke-YoungerKasami (CYK) algorithm (1960)

- This is an $\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithm to check if a string w is can be generated by a CFG in Chomsky Normal Form.
- As cubic algorithms tend to be slow, in practice people use algorithms based on restricted types of CFGs with a fixed amount of lookahead. Either top down LL parsing or bottom-up LR parsing. These algorithms are based on the PDA model.
- There have been improvements to CYK algorithm which reduce the run-time slightly below cubic $\left(\mathrm{n}^{2.8}\right)$ and to quadratic in the case of an unambiguous grammar.

The CYK algorithm

On input $w=w_{1} w_{2} \ldots \mathrm{w}_{\mathrm{n}}$:

1. If $w=\varepsilon$ and $S-->\varepsilon$ is a rule accept.
2. For $\mathrm{i}=1$ to n : [set up the subtring of length 1 case]
3. For each variable A:
4. Test whether $\mathrm{A}-->\mathrm{b}$ is a rule, where $\mathrm{b}=\mathrm{w}_{\mathrm{i}}$
5. If so, place A in table(i, i).
6. For $l=2$ to n : [Here l is a length of a substring]
7. For $\mathrm{i}=1$ to $\mathrm{n}-l+1$: [i is the start of the substring]
8. Let $\mathrm{j}=\mathrm{i}+l-1,[\mathrm{j}$ is the end of the substring $]$
9. For $\mathrm{k}=\mathrm{i}$ to $\mathrm{j}-1:$ [k is a place to split substring]

For each rule A-->BC
11.

If table(i, k) contains B and table $(\mathrm{k}+1, \mathrm{j})$ contains C put A in table(i, $)^{2}$.
12. If S is in table $(1, \mathrm{n})$ accept. Otherwise, reject.

Languages that are not Context Free

- We can prove languages are not context free by using the Pumping Lemma for context-free languages:

Pumping Lemma for Context Free Languages: If A is a context free language, then there is a number p (the pumping length) where, if s is any string A of length at least p, then s maybe divided into five pieces $s=u v x y z$ satisfying the conditions:

1. for each $i>=0, u^{i} x y^{i} z$ is in A.
2. $\operatorname{lvy} \gg 0$, and
3. $|v x y|<=p$.

Example use of the CFL Pumping Lemma

- Let $\mathrm{C}=\left\{\mathrm{a}^{\left.\mathrm{i} b^{\mathrm{j}}{ }^{k} \mid 0<=\mathrm{i}<=\mathrm{j}<=\mathrm{k}\right\}}\right.$
- Argue by contradiction. Let p be the pumping length of C and consider the string $\mathrm{s}=\mathrm{a}^{\mathrm{P}} \mathrm{b}^{\mathrm{P}}{ }^{\mathrm{P}}$.
- Then s can be written as uvxyz. There are two cases:

1. Both v and y contain only one type of alphabet symbol. So one of a, b, or c does not appear in v or y. So there are three subcases
a) The a's do not appear. By the pumping lemma, $u v v^{0} x^{0}{ }^{0} z=u x z$ must be in the language. This string has the same number of a's but fewer b's or c's so cannot be in C giving a contradiction.
b) The b's do not appear. Then either a's or c's must appear in v and y. If a's appear, then $u v^{2} x y^{2} z$ will have more a's then b's giving a contradiction. If c's appear, then $u v^{0} \mathrm{xy}^{0} \mathrm{z}$ will have more b's then c's giving a contradiction.
c) The c's do not appear. Then $u v^{2} x y^{2} z$ will have more a's or b's then c's giving a contradiction.
2. When either v or y contain more than one symbol $u v^{2} x y^{2} z$ will not contain the symbols in the right order giving a contradiction.

Proof of the Pumping Lemma for CFGs.

Let G be a CFG for our context free language A . Let IVI be the number of variables in G. Let b be the maximum number of symbols on the right hand side of a rule. So the maximum number of leaves a parse tree of height d can have is b^{d}. We set the pumping length to $p=b^{|V|}+1$. So if s is in A of length bigger than p, its smallest parse tree must be of height greater than $|\mathrm{V}|+1$. So some variable R must be repeated. So we can do the following kind of surgeries on the parse tree to show condition 1 of the pumping lemma:

Condition 2 of the pumping lemma will hold since if v and y were the empty string then the pumped down tree would be a smaller derivations of s contradicting our choice of parse tree. Condition 3 can be guarenteed by choosing R among the laset $|\mathrm{V}|+1$ of the longest path in the tree.

General Models of Computation

- So far we have looked at machines that either have bounded memory or access to memory limited to stack operations.
- We would like to consider models of computation which correspond to general purpose computers.
- In 1936, Alan Turing presented such a general model of a computer now called a Turing Machine.
- In this model, the machine has a finite control and a arbitrarily long tape of data consisting of squares able to hold one symbol. The machine also has a read head which can read one square at a time. Initially, this tape is black except for the n first squares which have the input. The machine in one step is allowed to read what's under its tape head, write a new symbol, move left or right one square and change its state. The machine has special states for accepting or rejecting.
- The first actual computer developed for code-breaking during World War II was actually based on his model.
- It turns out this model is actually equivalent to what can be done on modern computers.

Example

- Let B be the language $\{w \# w \mid w$ is a string over 0,1$\}$
- A Turing Machine M that could accept this language might operate as follows:
On input w:

1. Zig-zag across the tape to the corresponding positions on either side of the \# symbol to check whether these positions contain the same symbol. If they do not, or if no \# is found do into the reject state. If they have the same symbol change the symbol to a new symbol X.
2. When all the symbols on the left side of the \# have been $X^{\prime} d$ out, check if there are any more symbols to the right of the \#. If yes reject; if not accept.
