Yet More CFLs; Turing
Machines

CS154
Chris Pollett
Mar 8, 2006.

Outline

e Algorithms for CFGs
 Pumping Lemma for CFLs

 Turing Machines

Introduction to Cocke-Y ounger-
Kasami (CYK) algorithm (1960)

e This is an O(n?) algorithm to check if a string w is
can be generated by a CFG in Chomsky Normal
Form.

e As cubic algorithms tend to be slow, 1n practice
people use algorithms based on restricted types of
CFGs with a fixed amount of lookahead. Either
top down LL parsing or bottom-up LR parsing.

T'hese algorithms are based on the PDA model.

* There have been improvements to CYK algorithm
which reduce the run-time slightly below cubic
(n?>%) and to quadratic in the case of an
unambiguous grammar.

The CYK algorithm

On input w=w,w,...w,:
1. Ifw=c¢and S-->¢is arule accept.
For i =1 to n: [set up the subtring of length 1 case]
For each variable A:
Test whether A-->b 1s a rule, where b=w.
If so, place A in table(i,1).
For [=2 to n: [Here [is a length of a substring]
Fori=1ton-1[+ 1: [iis the start of the substring]
Letj=1+1[-1,[jis the end of the substring]
For k =1to j-1: [k is a place to split substring]
10. For each rule A-->BC

If table(i,k) contains B and table(k+1, j) contains C
put A in table(i,)).

12. If S is in table(1,n) accept. Otherwise, reject.

A S S Ul

[
[

Languages that are not Context
Free

e We can prove languages are not context free by using the
Pumping Lemma for context-free languages:

Pumping Lemma for Context Free Languages: If A is a
context free language, then there 1s a number p (the
pumping length) where, 1f s 1s any string A of length at
least p, then s maybe divided into five pieces s= uvxyz
satisfying the conditions:

1. for each i>=0, uv'xy'z is in A.
2. vyl >0, and
3. lvxyl <=p.

Example use of the CFL
Pumping Lemma

Let C = {albick | 0 <=1 <=j <=k}

Argue by contradiction. Let p be the pumping length of C and consider the
string s=aPbPcP.

Then s can be written as uvxyz. There are two cases:

1. Both v and y contain only one type of alphabet symbol. So one of a, b,
or ¢ does not appear in v or y. So there are three subcases

a) The a’s do not appear. By the pumping lemma, uvxy“z= uxz must
be in the language. This string has the same number of a’s but
fewer b’s or ¢’s so cannot be in C giving a contradiction.

b) The b’s do not appear. Then either a’s or ¢’s must appear in v and
y. If a’s appear, then uv?xy?z will have more a’s then b’s giving a
contradiction. If ¢’s appear, then uv’xy’z will have more b’s then
c’s giving a contradiction.

c) The ¢’s do not appear. Then uv2xy?z will have more a’s or b’s then
c’s giving a contradiction.

2. When either v or y contain more than one symbol uvxy?z will not
contain the symbols in the right order giving a contradiction.

Proof of the Pumping Lemma for
CEGs.

Let G be a CFG for our context free language A. Let |VI be the number of
variables in G. Let b be the maximum number of symbols on the right
hand side of a rule. So the maximum number of leaves a parse tree of
height d can have is bd. We set the pumping length to p =b'V'+1. So if s
is in A of length bigger than p, its smallest parse tree must be of height
greater than IVI+1. So some variable R must be repeated. So we can do
the following kind of surgeries on the parse tree to show condition 1 of
the pumping lemma: S R

Condition 2 of the pumping
S lemma will hold since if v and y
R X were the empty string then the
R u S RZ pumped down tree would be a
smaller derivations of s
ﬁ > R

contradicting our choice of parse

tree. Condition 3 can be
u 7 guarenteed by choosing R among
VX the laset [V|+1 of the longest path

1n the tree.

General Models of Computation

So far we have looked at machines that either have bounded memory or access
to memory limited to stack operations.

We would like to consider models of computation which correspond to
general purpose computers.

In 1936, Alan Turing presented such a general model of a computer now
called a Turing Machine.

In this model, the machine has a finite control and a arbitrarily long tape of
data consisting of squares able to hold one symbol. The machine also has a
read head which can read one square at a time. Initially, this tape is black
except for the n first squares which have the input. The machine in one step is
allowed to read what’s under its tape head, write a new symbol, move left or
right one square and change its state. The machine has special states for
accepting or rejecting.

The first actual computer developed for code-breaking during World War II
was actually based on his model.

It turns out this model is actually equivalent to what can be done on modern
computers.

Example

Let B be the language {w#w | w is a string over 0,1}

A Turing Machine M that could accept this language might operate
as follows:

On input w:

1. Zig-zag across the tape to the corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found do into the
reject state. If they have the same symbol change the symbol to
a new symbol X.

2. When all the symbols on the left side of the # have been X’d
out, check if there are any more symbols to the right of the #. If
yes reject; if not accept.

