More Finite Automata.

CS154

Chris Pollett
Feb. 8, 2006.

Outline

- Closure under Union
- Nondeterministic Finite Automata
- Formal Definition
- Equivalence

Closure under Union

Theorem If A_{1} and A_{2} two regular languages, so is their union $\mathrm{A}_{1} \cup \mathrm{~A}_{2}$.
Proof: Let $\mathrm{M}_{1}=\left(\mathrm{Q}_{1}, \Sigma, \delta_{1}, \mathrm{q}_{1}, \mathrm{~F}_{1}\right)$ and $\mathrm{M}_{2}=\left(\mathrm{Q}_{2}, \Sigma, \delta_{2}, \mathrm{q}_{2}, \mathrm{~F}_{2}\right)$ be the DFAs recognizing A_{1} and A_{2}. We would like make a new DFA, M, which simultaneously simulates both M_{1} and M_{2} and accepts a string w if either of M_{1} and M_{2} accepts. To simulate both machines at the same time we use a so-called cartesian product construction. Let $\mathrm{Q}=\mathrm{Q}_{1}$ $x Q_{2}$. M's alphabet is Σ like that of M_{1} and M_{2}. Define $\delta\left(\left(q, q^{\prime}\right), a\right)=\left(\delta_{1}(q, a), \delta_{2}\left(q^{\prime}, a\right)\right)$. Let the start state be $\left(q_{1}\right.$, $\left.\mathrm{q}_{2}\right)$. Finally, let $\mathrm{F}=\left(\mathrm{F}_{1} \times \mathrm{Q}_{2}\right) \cup\left(\mathrm{Q}_{1} \times \mathrm{F}_{2}\right)$.

Nondeterminism

- It seems harder to use a similar technique as the last slide to show that the regular language are closed under concatenation.
- This motivates why we'll consider another model of finite automata called nondeterministic finite automata (NFA) a which are slightly more flexible. We'll eventually show the two models are equivalent.
- In a deterministic finite automata, in each state reading a fixed symbols there is only one possible next state. Nondeterministic finite automata relax this condition and allow several possible next states, they are allow transition on the empty string.

- Notice we can have more than one transition out of a state, we can have ε transitions, and we don't need to have a transition from every alphabet symbol from a state.
- We say the NFA accepts w roughly if there is some sequence of transitions beginning with the start state, that processes each character of w and ends in an accept state.
- For instance, the machine above accept $\varepsilon, 0,00,000,1$; but rejects 01,11 , 0001. It rejects 01 because although it can get to state $q 2$ after seeing $\varepsilon 0=0$, it has nowhere to go when it sees a 1 so it can't process the 1 so it rejects. No other path in the machine processes 01 even this far.

Formal Definition of an NFA

- Recall the power set of a set $\mathrm{Q}, \mathrm{P}(\mathrm{Q})$, is the set of all subsets of Q .
- A nondeterministic finite automaton is a 5tuple $(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where

1. Q is a finite set of states,
2. Σ is an alphabet,
3. $\delta: \mathrm{Q} \times \Sigma \cup\{\varepsilon\}-->\mathrm{P}(\mathrm{Q})$ is the transition function,
4. $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state, and
5. $\mathrm{F} \subseteq \mathrm{Q}$ is the set of accept states.

Example

- The machine a couple slides back is defined as (Q, $\Sigma, \delta, q 1, F)$ where

1. $\mathrm{Q}=\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\}$
2. $\Sigma=\{0,1\}$
3. δ is given by:

$$
\begin{array}{lll}
\delta(\mathrm{q} 1, \varepsilon)-->\{q 2\} & \delta(\mathrm{q} 2, \varepsilon)-->\{ \} & \delta(\mathrm{q} 3, \varepsilon)-->\{ \} \\
\delta(\mathrm{q} 1,0)-->\{ \} & \delta(\mathrm{q} 2,0)-->\{q 2\} & \delta(\mathrm{q} 3,0)-->\{ \} \\
\delta(\mathrm{q} 1,1)-->\{q 3\} & \delta(\mathrm{q} 2,1)-->\{ \} & \delta(\mathrm{q} 3,1)-->\{ \}
\end{array}
$$

4. q 1 is the start state
5. $\mathrm{F}=\{\mathrm{q} 2, \mathrm{q} 3\}$

Formal Definition of Accepts

- We say M accepts $w=y_{1} \ldots y_{n}$, where each y_{i} is in $\Sigma \cup\{\varepsilon\}$, if there exists a sequence of states $r_{0}, r_{1}, \ldots r_{n}$ such that:

1. $\mathrm{r}_{0}=\mathrm{q}_{0}$
2. $\mathrm{r}_{\mathrm{i}+1} \in \delta\left(\mathrm{r}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}+1}\right)$, for $\mathrm{i}=0, \ldots, \mathrm{n}-1$
3. $r_{n} \in F$.

Equivalence of NFAs and DFAs

Theorem Any language recognized by an NFA is recognized by some DFA.
Proof: Given an NFA $\mathrm{N}=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ we want to simulate how it acts on a string w with a DFA, $\mathrm{M}=$ ($Q^{\prime}, \Sigma, \delta^{\prime}, q^{\prime}, F^{\prime}$). The idea is we want to keep track of what possible states it could be in after reading the first m characters of w. Let $\mathrm{Q}^{\prime}=\mathrm{P}(\mathrm{Q})$. The alphabet is the same. For each $R \in Q^{\prime}$ and $a \in$ Σ, let $\delta^{\prime}(\mathrm{R}, \mathrm{a})=\{\mathrm{q} \in \mathrm{Q} \mid \mathrm{q} \in \mathrm{E}(\delta(\mathrm{r}, \mathrm{a}))$ for some r $\in R\}$. Here $E\left(q^{\prime}\right)$ is the set of states reachable from q^{\prime} following only ε transitions. Let $q^{\prime}=\{q\}$. Let F^{\prime} $=\left\{R \in Q^{\prime} \mid R\right.$ contains an accept state of $\left.N\right\}$.

