
More Finite Automata.

CS154
Chris Pollett
Feb. 8, 2006.

Outline

• Closure under Union
• Nondeterministic Finite Automata
• Formal Definition
• Equivalence

Closure under Union

Theorem If A1 and A2 two regular languages, so is
their union A1∪ A2.

Proof: Let M1=(Q1, Σ, δ1, q1, F1) and M2 =(Q2, Σ, δ2, q2, F2)
be the DFAs recognizing A1 and A2. We would like make
a new DFA, M, which simultaneously simulates both M1
and M2 and accepts a string w if either of M1 and M2
accepts. To simulate both machines at the same time we
use a so-called cartesian product construction. Let Q = Q1
x Q2. M’s alphabet is Σ like that of M1 and M2. Define
δ((q, q’), a) = (δ1(q,a), δ2(q’,a)). Let the start state be (q1,
q2). Finally, let F = (F1 x Q2)∪ (Q1x F2).

Nondeterminism
• It seems harder to use a similar technique as the last slide

to show that the regular language are closed under
concatenation.

• This motivates why we’ll consider another model of finite
automata called nondeterministic finite automata (NFA) a
which are slightly more flexible. We’ll eventually show
the two models are equivalent.

• In a deterministic finite automata, in each state reading a
fixed symbols there is only one possible next state.
Nondeterministic finite automata relax this condition and
allow several possible next states, they are allow transition
on the empty string.

More NFA motivation

• Notice we can have more than one transition out of a state, we can have ε-
transitions, and we don’t need to have a transition from every alphabet symbol
from a state.

• We say the NFA accepts w roughly if there is some sequence of transitions
beginning with the start state, that processes each character of w and ends in an
accept state.

• For instance, the machine above accept ε, 0, 00, 000, 1; but rejects 01, 11,
0001. It rejects 01 because although it can get to state q2 after seeing ε0 = 0, it
has nowhere to go when it sees a 1 so it can’t process the 1 so it rejects. No
other path in the machine processes 01 even this far.

q1

q2ε

q31

0

Formal Definition of an NFA

• Recall the power set of a set Q, P(Q), is the set
of all subsets of Q.

• A nondeterministic finite automaton is a 5-
tuple (Q, Σ, δ, q, F) where

1. Q is a finite set of states,
2. Σ is an alphabet,
3. δ: Q x Σ ∪{ε} --> P(Q) is the transition function,
4. q0 ∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

Example

• The machine a couple slides back is defined as
(Q, Σ, δ, q1, F) where

1. Q={q1, q2, q3}
2. Σ = {0, 1}
3. δ is given by:

δ(q1, ε)--> {q2} δ(q2, ε)--> {} δ(q3, ε)--> {}
δ(q1, 0)--> {} δ(q2, 0)--> {q2} δ(q3, 0)--> {}
δ(q1, 1) --> {q3} δ(q2, 1)--> {} δ(q3, 1)--> {}

4. q1 is the start state
5. F = {q2, q3}

Formal Definition of Accepts

• We say M accepts w = y1…yn, where
each yi is in Σ ∪{ε}, if there exists a
sequence of states r0, r1, …rn such that:

1. r0 = q0

2. ri+1∈ δ(ri, yi+1), for i=0, …, n-1
3. rn ∈ F.

Equivalence of NFAs and DFAs

Theorem Any language recognized by an NFA is
recognized by some DFA.

Proof: Given an NFA N= (Q, Σ, δ, q, F) we want to
simulate how it acts on a string w with a DFA, M=
(Q’, Σ, δ’, q’, F’). The idea is we want to keep
track of what possible states it could be in after
reading the first m characters of w. Let Q’= P(Q).
The alphabet is the same. For each R∈Q’ and a ∈
Σ, let δ’(R,a) = {q ∈Q | q ∈ E(δ(r,a)) for some r
∈R}. Here E(q’) is the set of states reachable from
q’ following only ε transitions. Let q’={q}. Let F’
= {R ∈Q’| R contains an accept state of N}.

