More Context Free Languages

CS154
Chris Pollett
Mar 6, 2006.

Outline

e Pushdown Automata

e Equivalence

Pushdown Automata

e Our machine model is a generalization of finite automata.

e We allow our machines to have a stack:

Stack X state > E
Yy control

|z b

o~ 9

Input

e In a give state reading a given input symbol and a given stack symbol,
the machine can switch states, advance to the next character of the
input, pop the top symbol off the stack, or push a new symbol onto the

stack.

e For instance, the language {0"1" | n>=0} could be recognized by such a
machine. When one reads an O push it onto the stack. When one starts
reading 1’s, if one ever sees another O reject, also start popping 0’°s off
of the stack. If when one gets to the end of the string the stack is

empty, then accept.

A e

Formal Definition

For a set of strings A. Let A, = A U {¢}.

A pushdown automaton is a 6-tuple M=(Q, Z, I, 0, q,, F) where
Q is the set of states

2 is the input alphabet

I" is the stack alphabet

0: Qx 2, x I',-->P(Q x I')) is the transition function

q,E Q 1s the start state, and

F C Q is the set of accept states.

M accepts w=w,w,...w_ where each w, € 2_if there is a sequence

of states r,, ry, ..., I, in Q and a sequence of strings s, sy, ..., S,,1n

[such that (1) ry= q,, sp= €, (2) for i =0,..., m-1, we have (r,,,,b) €
o(r,, w,,;, a) where s;=at and s,,,= bt for some a,b € I', and t €
I'¥, and (3) r_EF.

Remarks on the Definition

* Notice the machine 1s a generalization of an
NFA not a DFA.

* One can show deterministic pushdown
automata are a strictly weaker then
nondeterministic pushdown automata.

Example

e We can define a machine to recognize {0"1" | n>=0} as M=(Q, 2, T',9, q,, F)
where:

Q={ql, g2, g3, ¢4}
2={0,1}

r={0,$}

F={ql, ¢4}

and 8={(q1, €, €)->(q2, $),
(2,0, £)-->(q2, 0),
(92, 1, 0)-->(q3, ¢),
(3, 1, 0)-->(q3, €)
(93, €,%)-->(q4, €)

}

e (Can then using the definition show this machine accepts 0011.

Equivalence

* We now works towards showing a language
1s context free 1f and only if some
pushdown automata recognizes it.

e The proof split into two parts:

— If a language 1s context-free then some
pushdown automata recognizes it

— If a pushdown automata recognizes some
language then there 1s a context-free grammar
that recognizes the same language.

CFL=> PDA recognizes

Let A be a CFL. Let G be a CFG for this language, and let w be a string
generated by G (and hence in A). We will have a machine with three main
states { g Qioop> accepry tOgEther with some auxiliary states E.

1. We have transitions (q,. €, €)-->(q’,$) and (q’, €, s)——>(q100p, S) that
push the start variable S of the CFG onto our machine’s stack.

2. Then what we want to do is to simulate the steps to generate w on our
PDAs stack.

a) If A is a variable of the CFG on the top fo the stack, and we are in
the state q,,,, we nondeterministically choose a rule A->w,w,..w,
and using a sequence of transitions (qloop &, A)-->(q, W), (q, &
€) -->(qy, W,{) ... (q, €, €) ——>(q100p, w,) We simulate this rule on
the stack. Here g, are some of the auxiliary states in E.

b) To handle a terminal such as b on the top of the stack we have
transitions (qy,,, ,b, b) -->(qy,,, » €)-

3. Finally, we have a transition (qy,, , €, $) ==>(Qyecepr €) Where g .. 1
our accept state.

PDA recognizes => CFL

Let P be a PDA. We want to make a CFG G that generates the same
language.

For each pair of states p,q in P we will have in G a variable A . This
variable will be able to generate all strings that can take P in state p
with the empty stack to state q with the empty stack.

To simplify the problem we will assume P has been modified so that:
— it has a single accept state
— it empties its stack before accepting

— each transition either pushes a symbol onto the stack or pops one
off of the stack (but not both). (We might add states to make our
machine have this property).

G will have rules A --> ¢ for each state p of P; A -->aA b for each
p.q, 1,s such that d(p,a, €) contains (r,t) and d(s,b, t) contains (q, €), and

A, AL A for any state 1.

The start variable of G will be A ¢ .ccepr-

