More Context Free Languages

CS154
Chris Pollett
Mar 6, 2006.

Outline

- Pushdown Automata
- Equivalence

Pushdown Automata

- Our machine model is a generalization of finite automata.
- We allow our machines to have a stack:

- In a give state reading a given input symbol and a given stack symbol, the machine can switch states, advance to the next character of the input, pop the top symbol off the stack, or push a new symbol onto the stack.
- For instance, the language $\left\{0^{n} 1^{n} \mid n>=0\right\}$ could be recognized by such a machine. When one reads an 0 push it onto the stack. When one starts reading 1 's, if one ever sees another 0 reject, also start popping 0 's off of the stack. If when one gets to the end of the string the stack is empty, then accept.

Formal Definition

- For a set of strings A . Let $\mathrm{A}_{\varepsilon}=\mathrm{A} \cup\{\varepsilon\}$.
- A pushdown automaton is a 6 -tuple $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ where

1. Q is the set of states
2. $\quad \Sigma$ is the input alphabet
3. Γ is the stack alphabet
4. $\delta: \mathrm{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}-->\mathrm{P}\left(\mathrm{Q} \times \Gamma_{\varepsilon}\right)$ is the transition function
5. $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state, and
6. $\mathrm{F} \subseteq \mathrm{Q}$ is the set of accept states.

- Maccepts $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}$ where each $\mathrm{w}_{\mathrm{i}} \in \Sigma_{\varepsilon}$ if there is a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ in Q and a sequence of strings $s_{0}, s_{1}, \ldots, s_{m}$ in Γ^{*} such that (1) $r_{0}=q_{0}, s_{0}=\varepsilon$, (2) for $i=0, \ldots, m-1$, we have $\left(r_{i+1}, b\right) \in$ $\delta\left(r_{i}, w_{i+1}, a\right)$ where $s_{i}=$ at and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in$ Γ^{*}, and (3) $\mathrm{r}_{\mathrm{m}} \in \mathrm{F}$.

Remarks on the Definition

- Notice the machine is a generalization of an NFA not a DFA.
- One can show deterministic pushdown automata are a strictly weaker then nondeterministic pushdown automata.

Example

- We can define a machine to recognize $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n}>=0\right\}$ as $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{1}, \mathrm{~F}\right)$ where:

$$
\begin{aligned}
& \mathrm{Q}=\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \mathrm{q} 4\} \\
& \Sigma=\{0,1\} \\
& \Gamma=\{0, \$\} \\
& \mathrm{F}=\{\mathrm{q} 1, \mathrm{q} 4\} \\
& \text { and } \delta=\{(\mathrm{q} 1, \varepsilon, \varepsilon)->(\mathrm{q} 2, \$), \\
& \quad(\mathrm{q} 2,0, \varepsilon)-->(\mathrm{q} 2,0), \\
& \\
& \quad(\mathrm{q} 2,1,0)-->(\mathrm{q} 3, \varepsilon), \\
& \\
& \quad(\mathrm{q} 3,1,0)-->(\mathrm{q} 3, \varepsilon) \\
& \\
& \quad(\mathrm{q} 3, \varepsilon, \$)-->(\mathrm{q} 4, \varepsilon) \\
& \quad\}
\end{aligned}
$$

- Can then using the definition show this machine accepts 0011 .

Equivalence

- We now works towards showing a language is context free if and only if some pushdown automata recognizes it.
- The proof split into two parts:
- If a language is context-free then some pushdown automata recognizes it
- If a pushdown automata recognizes some language then there is a context-free grammar that recognizes the same language.

CFL=> PDA recognizes

- Let A be a CFL. Let G be a CFG for this language, and let w be a string generated by G (and hence in A). We will have a machine with three main states $\left\{q_{\text {start }}, \mathrm{q}_{\text {loop }}, \mathrm{q}_{\text {accept }}\right\}$ together with some auxiliary states E .

1. We have transitions $\left(\mathrm{q}_{\text {start, }}, \varepsilon, \varepsilon\right)-->\left(\mathrm{q}^{\prime}, \$\right)$ and $\left(\mathrm{q}^{\prime}, \varepsilon, \varepsilon\right)-->\left(\mathrm{q}_{\text {loop }}, S\right)$ that push the start variable S of the CFG onto our machine's stack.
2. Then what we want to do is to simulate the steps to generate w on our PDAs stack.
a) If A is a variable of the CFG on the top fo the stack, and we are in the state $\mathrm{q}_{\text {loop }}$ we nondeterministically choose a rule $A->\mathrm{w}_{1} \mathrm{w}_{2} . . \mathrm{w}_{\mathrm{n}}$ and using a sequence of transitions $\left(\mathrm{q}_{\text {loop }}, \varepsilon, A\right)-->\left(\mathrm{q}_{1}, \mathrm{w}_{\mathrm{n}}\right),\left(\mathrm{q}_{1}, \varepsilon\right.$, $\varepsilon)-->\left(\mathrm{q}_{2}, \mathrm{w}_{\mathrm{n}-1}\right) \ldots\left(\mathrm{q}_{\mathrm{n}}, \varepsilon, \varepsilon\right)-->\left(\mathrm{q}_{\text {loop }}, \mathrm{w}_{1}\right)$ We simulate this rule on the stack. Here q_{i} are some of the auxiliary states in E .
b) To handle a terminal such as b on the top of the stack we have transitions ($\left.\mathrm{q}_{\text {loop }}, \mathrm{b}, \mathrm{b}\right)-->\left(\mathrm{q}_{\text {loop }}, \varepsilon\right)$.
3. Finally, we have a transition $\left(\mathrm{q}_{\text {loop }}, \varepsilon, \$\right)-->\left(\mathrm{q}_{\text {accept }}, \varepsilon\right)$ where $\mathrm{q}_{\text {accept }}$ is our accept state.

PDA recognizes $=>$ CFL

- Let P be a PDA. We want to make a CFG G that generates the same language.
- For each pair of states p, q in P we will have in G a variable A_{pq}. This variable will be able to generate all strings that can take P in state p with the empty stack to state q with the empty stack.
- To simplify the problem we will assume P has been modified so that:
- it has a single accept state
- it empties its stack before accepting
- each transition either pushes a symbol onto the stack or pops one off of the stack (but not both). (We might add states to make our machine have this property).
- G will have rules $A_{p p}-->\varepsilon$ for each state p of $P ; A_{p q}{ }^{-->} \mathrm{aA}_{\mathrm{rs}}$ b for each $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ such that $\delta(\mathrm{p}, \mathrm{a}, \varepsilon)$ contains (r, t) and $\delta(\mathrm{s}, \mathrm{b}, \mathrm{t})$ contains $(\mathrm{q}, \varepsilon)$, and $\mathrm{A}_{\mathrm{pq}}->\mathrm{A}_{\mathrm{pr}} \mathrm{A}_{\mathrm{rq}}$ for any state r .
- The start variable of G will be $A_{q 0, q a c c e p t}$.

