
Finite Automata.

CS154
Chris Pollett
Feb. 6, 2006.

Outline

• Introductory Examples
• Formal Definition
• Example of the Definition
• Formal Definition of Accepts
• Designing Finite Automata
• Regular Operations

Introductory Examples

• Finite automata are computer models which are
useful when one has very limited memory
availability.

• Consider an automatic door say at a grocery store.

• We can model the door state this using a finite
automata:

Outside
Pad

Inside
Pad

Door

Closed Open

Outside
Inside or
neither
pressed Neither

Either or
both
pressed

More on Door Example
• The controller might start in a CLOSED state and receive the signals:

OUTSIDE, INSIDE, NEITHER, INSIDE, BOTH, OUTSIDE, INSIDE
NEITHER.

• It would then transition between the states CLOSED (start), OPEN,
OPEN, CLOSED, CLOSED, CLOSED, OPEN, OPEN, CLOSED.

• Notice only need 1-bit of memory to keep track of state.
• It is also straightforward to represent transitions in a table:

• Finite automata and the their probabilistic counterparts called Markov
chains are also useful for pattern recognition. For example,
recognizing keywords in programming languages. Or figuring out
which word English is likely based on the previous ones seen.

Neither Outside Inside Both
Closed
Open

Closed
Closed

Open
Open

Closed
Open

Closed
Open

Names for things
• The picture we drew of our automata a couple slides back is called a state

diagram.
• We will usually use the variables M, N,… for machines.
• Here is another example machine M1:

• The start state is the state with an arrow going from nowhere into it.
• If we are recognizing strings then when we stop process when we get to the

end of a string of inputs.
• If we are in a double circled state at that point we accept the string otherwise

we reject it. So double circled states called accept states.
• Arrows going from one state to another are called transitions.
• You might want to see if you can figure out if the above automata accepts each

of the following strings: 000, 0110, 1101.

q1 q2 q3
1 0

0,1

0 1

Formal Definition

• A finite automaton is a 5-tuple (Q, ∑, δ, q0, F),
where

1. Q is a finite set called the states.
2. ∑ is a finite set called the alphabet.
3. δ:Q x ∑ --> Q is the transition function.
4. q0∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

• The transition function tells us if we are in a
given state reading a given symbol what is the
next state to go to.

Example of the Definition
• The machine M1 of a couple slides back can be described as:

1. Q = {q1, q2, q3}
2. ∑ = {0, 1}
3. δ can be described as:

(q1, 0) --> q1 (q1, 1) --> q2
(q2, 0) --> q3 (q2, 1) --> q2
(q3, 0) --> q2 (q3, 1) --> q2

4. q1 is the start state, and
5. F = {q2}

• We write L(M) for the language that M accepts. That is, those
strings that M accepts.

• Given a set of strings S, we say M recognizes S if L(M)=S.
• So M1 recognizes { w | w contains at least one 1 and an even number

of 0s follow the last 1}

Formal Definition of Accepting a
String

• Let M= (Q, ∑, δ, q0, F) be a finite automaton
and let w = w1 w2… wn be a string. Then M
accepts w if a sequence of states r0 r1… rn in Q
exist satisfying:

1. r0 = q0
2. δ(ri, wi+1) = ri+1, for i=0,1,…, n-1, and
3. rn∈ F.

• We say M recognizes language A if A= {w | M
accepts w}.

• A language is called a regular language if some
finite automaton recognizes it.

Designing Finite Automata
• Suppose we want to recognize the language that consists of an odd number

of 1s.
• One approach is to “pretend to be the automaton”.
• You get symbols from {0,1} one by one.
• Ask yourself how much of the string so far do I read to remember in order to

decide whether to accept or not. In this case,
1. even so far
2. odd so far

• Make each of these possibilities states. Next pretend you are in one of the
states and see a symbol. What do you do?

• Finally you should figure out what your accept and final states are:

qeven qodd

10 0

1

qeven qodd

10 0

1

Regular Operations

• Just as the natural number are closed under
operations like addition and multiplication,
the regular languages enjoy some closure
properties:
– Union A∪B = {x| x ∈ A or x ∈ B}
– Concatenation AοB = {xy | x ∈ A and y ∈ B}
– Star A* = {x1 x2…xk| k>=0 and each xi ∈ A }

