Decidable Languages and Diagonalization

CS154

Chris Pollett
Apr 5, 2006.

Outline

- More decidable problems for CFLs
- Universal Turing Machines
- Diagonalization

CFL Emptiness and Equality

- Let $\mathrm{E}_{\mathrm{CFG}}=\{\langle\mathrm{G}\rangle \mid \mathrm{G}$ is a CFG such that $\mathrm{L}(\mathrm{G})$ is empty $\}$.

Theorem $\mathrm{E}_{\mathrm{CFG}}$ is decidable.
Proof. Let S be the following Turing machine:
$\mathrm{T}=$ "On input $<\mathrm{G}>$, where G is a CFG :

1. Mark all terminal symbols in G .
2. Repeat until no new variables get marked:
a) Mark any variable A where G has a rule $A-->U_{1}, . ., U_{k}$ provided all the U_{i} are already marked.
3. If the start variable is not marked, accept; otherwise, reject."

- Let $\mathrm{EQ}_{\mathrm{CFG}}=\{<\mathrm{A}, \mathrm{B}>\mid \mathrm{A}, \mathrm{B}$ are CFGs and $\mathrm{L}(\mathrm{A})=\mathrm{L}(\mathrm{B})\}$
- It turns out $\mathrm{EQ}_{\mathrm{CFG}}$ is not decidable, but we will show this a fair bit later.

CFL Decidability

Theorem Every CFL is decidable.
Proof. Let L be a CFL and let G be a grammar that generates
it. First, we can use the algorithm from the March 1 lecture, to convert this to Chomsky Normal Form. Call the resulting grammar G^{\prime}. Then we construct a $\mathrm{TM} \mathrm{M}_{\mathrm{G}}$, which operates as follows:
$\mathrm{M}_{\mathrm{G}}=$ ="On input w :

- Simulate the CYK algorithm on w according to G^{\prime}.
- If the algorithm accepts, then accept; otherwise, reject."

Universal Turing Machines

- Continuing in the vein of the last couple of lectures, it is natural to ask if there is a decision procedure for:
$\mathrm{A}_{\mathrm{TM}}=\{\langle\mathrm{M}, \mathrm{w}\rangle \mid \mathrm{M}$ is a TM and M accepts w$\}$
- There is a recognition procedure for this language:
$\mathrm{U}=$ " On input $\langle\mathrm{M}, \mathrm{w}\rangle$, where M is a TM and w is a string:

1. Simulate M on input w .
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

- The above Turing Machine is called a Universal Turing Machine (a UTM) because it can be used to simulate any other Turing machine.
- However, as U on a given input does not necessarily halt, it is not a decision procedure for A_{TM}.
- It turns out it is impossible to get a decision procedure for A_{TM}.
- The next few slides work towards showing this.

Sizes of Sets

- In the 1870's Georg Cantor was interested in figuring out when two sets are of the same size.
- In particular, he was worried about infinite sized sets.
- He argued two sets A, B should be said to be of the same size if there is a one-to-one, onto function (a bijection) between them.
- Recall one-to-one means $a \neq b$ implies $f(a) \neq f(b)$ and onto means for every element b in B, there is some a in A such that $f(a)=b$.
- For example the map $f(k)=2 k$ is a bijection between the integers and the even integers.
- A set is said to be countable if there is a bijection between it and a subset of the naturals. Otherwise, a set is said to be uncountable.
- For example, the rational numbers and the set of finite strings over are $\{0,1\}$ are countable. (will doodle on board why, but also see book).

The Diagonal of a Function on

Sequences.

- Suppose f is a one-to-one function from a countable set $\mathrm{A}=\{\mathrm{a}(0), \mathrm{a}(1)$, $a(2), \ldots\}$ to sequences of elements over some set B of size at least 2 .
- For example,

$$
\begin{aligned}
& \mathrm{f}(\mathrm{a}(0))=(1,0,1) \\
& \mathrm{f}(\mathrm{a}(1))=(0,0, \mathrm{e}) \\
& \mathrm{f}(\mathrm{a}(2))=(0,1,1)
\end{aligned}
$$

- Let $f(a(i))_{j}$ denote the j th element of the sequence $f(a(i))$.
- The diagonal of this function is the function of f is the sequence $\mathrm{d}(\mathrm{f})=\left(\mathrm{f}(\mathrm{a}(0))_{0}, \mathrm{f}(\mathrm{a}(1))_{1}, \mathrm{f}(\mathrm{a}(2))_{2}, \ldots\right)$.
- So in this case $d(f)=(1,0,1)$.
- Call a sequence $d^{\prime}(f)$ a complement of the diagonal if $d^{\prime}(f)_{i}$ is always different from $\mathrm{d}(\mathrm{f})_{\mathrm{i}}$.
- For example, for the f above a possible $d^{\prime}(f)$ is $(0,1,0)$.
- The following theorem is an easy consequence of our definition.

Theorem (Diagonalization Theorem) If f satisfies the first bullet above then it does not map any element to a complement of its diagonal.

Corollaries to the Diagonalization Theorem

Corollary. Countable set A is not the same size as its $P(A)$.
Proof. Let $\mathrm{f}: \mathrm{A}-->\mathrm{P}(\mathrm{A})$ be a supposed bijection. Since A is countable, we have some function $a(k)$ to list out its elements $a(0), a(1), a(2), \ldots$ An element $\{\mathrm{a}(2), \mathrm{a}(5), ..\} \in \mathrm{P}(\mathrm{A})$ can be view as a binary sequence $(0,0$, $1,0,0,1, \ldots)$ where we have a 1 if $\mathrm{a}(\mathrm{i})$ is in $\mathrm{P}(\mathrm{A})$ and a 0 otherwise. So f satisfies the diagonalization theorem. A complement of the diagonal for f will still be in $P(A)$ but not mapped to by f.
Corollary. The reals are uncountable.
Proof. Consider the function $g: R-->(0,1)$ given by

$$
\mathrm{g}(\mathrm{x})=1 / 2[\mathrm{x} /(1+|\mathrm{x}|)+1] .
$$

It is not hard to see this is one-to-one and onto. So it suffices to show the open interval $(0,1)$ is uncountable. Let $\mathrm{f}: \mathrm{N}-->(0,1)$ be a supposed bijection between $(0,1)$ and this interval. A number $x \in(0,1)$ be viewed as a decimal point followed by sequence over 0-9. Pick a complement of the diagonal that has no 0's or 9's. This will again be a number in $(0,1)$ but not mapped to by f .

