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CFL Emptiness and Equality

. Let Eqpg={<G>| G i1s a CFG such that L(G) is empty}.
Theorem E_; is decidable.

Proof. Let S be the following Turing machine:

T= “On input <G>, where G 1s a CFG:

1. Mark all terminal symbols in G.

2.  Repeat until no new variables get marked:

a) Mark any variable A where G has a rule A-->U,,..,U, provided
all the U, are already marked.

3.  If the start variable is not marked, accept; otherwise, reject.”

. Let EQrpg=1{<A,B>| A, B are CFGs and L(A)=L(B)}

e It turns out EQgg; 18 not decidable, but we will show this a fair bit
later.



CFL Decidability

Theorem Every CFL is decidable.

Proof. Let L be a CFL and let G be a grammar that generates
it. First, we can use the algorithm from the March 1
lecture, to convert this to Chomsky Normal Form. Call
the resulting grammar G’. Then we construct a TM M.
which operates as follows:

Mg;-="On input w:
. Simulate the CYK algorithm on w according to G’.

. If the algorithm accepts, then accept; otherwise, reject.”



Universal Turing Machines

Continuing in the vein of the last couple of lectures, it is natural to
ask if there is a decision procedure for:

A= <M,w>1Mis a TM and M accepts w}

There is a recognition procedure for this language:
U=" On input <M,w>, where M is a TM and w 1is a string:
I.  Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its reject state,
reject.”

The above Turing Machine is called a Universal Turing Machine
(a UTM) because it can be used to simulate any other Turing
machine.

However, as U on a given input does not necessarily halt, it is not a
decision procedure for Ay

It turns out it is impossible to get a decision procedure for Ay,
The next few slides work towards showing this.



Sizes of Sets

In the 1870’s Georg Cantor was interested in figuring out when two
sets are of the same size.

In particular, he was worried about infinite sized sets.

He argued two sets A, B should be said to be of the same size if there
1S a one-to-one, onto function ( a bijection) between them.

Recall one-to-one means a # b implies f(a) # f(b) and onto means for
every element b in B, there is some a in A such that f(a) = b.

For example the map f(k)=2k is a bijection between the integers and
the even integers.

A set is said to be countable if there is a bijection between it and a
subset of the naturals. Otherwise, a set is said to be uncountable.

For example, the rational numbers and the set of finite strings over are
{0,1} are countable. (will doodle on board why, but also see book).



The Diagonal of a Function on
Sequences.

Suppose f is a one-to-one function from a countable set A={a(0), a(l),
a(2), ...} to sequences of elements over some set B of size at least 2.

For example,

Let f(a(1)); denote the jth element of the sequence f(a(1)).
The diagonal of this function is the function of f is the sequence

d(H)=(f(a(0)),, f(a(1)),, f(a(2)),,...).
So in this case d(f) = (1, 0, 1).

Call a sequence d’(f) a complement of the diagonal if d’(f), is always
different from d(f)..

For example, for the f above a possible d’(f) is (0, 1, 0).
The following theorem is an easy consequence of our definition.

Theorem (Diagonalization Theorem) If f satisfies the first bullet above then

it does not map any element to a complement of its diagonal.



Corollaries to the Diagonalization
Theorem

Corollary. Countable set A is not the same size as its P(A).

Proof. Let f:A --> P(A) be a supposed bijection. Since A is countable, we
have some function a(k) to list out its elements a(0), a(1), a(2), ...An
element {a(2), a(5), ..}&P(A) can be view as a binary sequence (0, O,
1,0,0, 1, ...) where we have a 1 if a(i1) is in P(A) and a O otherwise. So
f satisfies the diagonalization theorem. A complement of the diagonal
for f will still be in P(A) but not mapped to by f.

Corollary. The reals are uncountable.
Proof. Consider the function g:R-->(0,1) given by
g(x) = 1/2[x/(1+Ix]) +1].

It is not hard to see this is one-to-one and onto. So it suffices to show
the open interval (0,1) is uncountable. Let f:N --> (0,1) be a supposed
bijection between (0,1) and this interval. A number x € (0,1) be
viewed as a decimal point followed by sequence over 0-9. Pick a
complement of the diagonal that has no 0’s or 9’s. This will again be a
number in (0, 1) but not mapped to by f.



