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CFL Emptiness and Equality
• Let ECFG={<G> | G is a CFG such that L(G) is empty}.
Theorem ECFG is decidable.
Proof. Let S be the following Turing machine:
T= “On input <G>, where G is a CFG:
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:

a) Mark any variable A where G has a  rule A-->U1,..,Uk provided
all the Ui are already marked.

3. If the start variable is not marked, accept; otherwise, reject.”
• Let EQCFG={<A,B> | A, B are CFGs and L(A)=L(B)}
• It turns out EQCFG is not decidable, but we will show this a fair bit

later.



CFL Decidability

Theorem Every CFL is decidable.
Proof. Let L be a CFL and let G be a grammar that generates

it. First, we can use the algorithm from the  March 1
lecture, to convert this to Chomsky Normal Form. Call
the resulting grammar G’. Then we construct a TM MG’
which operates as follows:

MG’=“On input w:
• Simulate the CYK algorithm on w according to G’.
• If the algorithm accepts, then accept; otherwise, reject.”



Universal Turing Machines

• Continuing in the vein of the last couple of lectures, it is natural to
ask if there is a decision procedure for:

ATM={ <M,w> | M is a TM and M accepts w}
• There is a recognition procedure for this language:

U=“ On input <M,w>, where M is a TM and w is a string:
1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state,

reject.”
• The above Turing Machine is called a Universal Turing Machine

(a UTM) because it can be used to simulate any other Turing
machine.

• However, as U on a given input does not necessarily halt, it is not a
decision procedure for ATM.

• It turns out it is impossible to get a decision procedure for  ATM.
• The next few slides work towards showing this.



Sizes of Sets

• In the 1870’s Georg Cantor was interested in figuring out when two
sets are of the same size.

• In particular, he was worried about infinite sized sets.
• He argued two sets A, B should be said to be of the same size if there

is a one-to-one, onto function ( a bijection) between them.
• Recall one-to-one means a ≠ b implies f(a) ≠ f(b) and onto means for

every element b in B, there is some a in A such that f(a) = b.
• For example the map f(k)=2k is a bijection between the integers and

the even integers.
• A set is said to be countable if there is a bijection between it and a

subset of the naturals. Otherwise, a set is said to be uncountable.
• For example, the rational numbers and the set of finite strings over are

{0,1} are countable. (will doodle on board why, but also see book).



The Diagonal of a Function on
Sequences.

• Suppose f is a one-to-one function from a countable set A={a(0), a(1),
a(2), …} to sequences of elements over some set B of size at least 2.

• For example,
f(a(0)) = (1, 0, 1)
f(a(1)) = (0, 0, 0)
f(a(2)) = (0, 1, 1)

• Let f(a(i))j denote the jth element of the sequence f(a(i)).
• The diagonal of this function is the function of f is the sequence

d(f)=(f(a(0))0, f(a(1))1, f(a(2))2,…).
• So in this case d(f) = (1, 0, 1).
• Call a sequence d’(f) a complement of the diagonal if d’(f)i is always

different from d(f)i.
• For example, for the f above a possible d’(f) is (0, 1, 0).
• The following theorem is an easy consequence of our definition.
Theorem (Diagonalization Theorem) If f satisfies the first bullet above then

it does not map any element to a complement of its diagonal.



Corollaries to the Diagonalization
Theorem

Corollary. Countable set A is not the same size as its P(A).
Proof. Let f:A --> P(A) be a supposed bijection. Since A is countable, we

have some function a(k) to list out its elements a(0), a(1), a(2), …An
element {a(2), a(5), ..}∈P(A) can be view as a binary sequence (0, 0,
1, 0, 0, 1, …) where we have a 1 if a(i) is in P(A) and a 0 otherwise. So
f satisfies the diagonalization theorem. A complement of the diagonal
for f will still be in P(A) but not mapped to by f.

Corollary. The reals are uncountable.
Proof. Consider the function g:R-->(0,1) given by

g(x) = 1/2[x/(1+|x|) +1].
It is not hard to see this is one-to-one and onto. So it suffices to show
the open interval (0,1) is uncountable. Let f:N --> (0,1) be a supposed
bijection between (0,1) and this interval.  A number x ∈ (0,1) be
viewed as a decimal point followed by sequence over 0-9. Pick a
complement of the diagonal that has no 0’s or 9’s. This will again be a
number in (0, 1) but not mapped to by f.


