
Mapping Reducibility and The
Recursion Theorem

CS154
Chris Pollett
May 3, 2006.

Outline

• More on Mapping Reducibility
• Rice’s Theorem
• Start of the Recursion Theorem

More on Mapping Reducibility
• We are now going to give some results about mapping reductions

and give an example.
Theorem (*). If A ≤m B and B is decidable, then A is decidable.
Proof. Let M be a decider for B and let f be the reduction from A to B. A

decider N for A can be defined as follows:
N = “On input w:

1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

• Taking the contrapositive…
Corollary. If A ≤m B and A is undecidable, then B is undecidable.

An Example of Mapping Reducibility

• Recall we used a reduction from ATM to show HALTTM is
undecidable.

• We can rephrase this reduction as a mapping reducibility...
• What we need to do is come up with a function F that takes inputs of

the form <M, w> and returns outputs of the form <M′, w′>, so that
<M, w> is in ATM iff <M′, w′> is in HALTTM.

• To do this, let F compute:
F = “On input <M, w> :
1. Construct the following machine M′.

1. Run M on x.
2. If M accepts, accept.
3. If M rejects, enter an infinite loop.”

2. Output <M′, w>.”

Mapping Reducibility and Turing
Recognizability

Theorem.
(a) If A ≤m B and B is Turing Recognizable, then A is
Turing Recognizable.
(b) If A ≤m B and B is co-Turing Recognizable, then A is
co-Turing Recognizable.

Proof. The proof is essentially the same as Theorem (*) that
we did earlier.

Corollary.
(a) If A ≤m B and A is not Turing Recognizable, then B is
not Turing Recognizable.
(b) If A ≤m B and A is not co-Turing Recognizable, then B
is not co-Turing Recognizable.

Applications to EQTM

Theorem. EQTM is neither Turing-recognizable nor co-Turing-recognizable.
Proof. First we show EQTM is not Turing recognizable. To do this we show that

ATM is mapping reducible to E QTM. The reducing function F is as follows:
F = “ On input <M, w>:

1. Construct two machines: M1 , which on any input rejects and M2 which
on any input erases the input and then simulates M on w and accepts if
M does.

2. Output < M1, M2>”
To see EQTM is not co-Turing recognizable we show ATM is mapping

reducible to EQTM. To do this consider the reduction G:
G = “ On input <M, w>:

1. Construct two machines: M1 , which on any input accepts and M2
which on any input erases the input and then simulates M on w and
accepts if M does.

2. Output < M1, M2>”

Rice’s Theorem
• This theorem shows that almost any problem one could come up with

connected to Turing Machines is undecidable.
Theorem. Let P be a language such that there exists TM descriptions <M> ∈ P

and <M′> ∉ P. Further assume that whenever we have two machines M1 and
M2 such that L(M1) = L(M2), then we have <M1> ∈ P iff <M2> ∈ P. Then P
is undecidable.

Proof. Suppose we had a decider R for P. We show how to use R to build a
decider for ATM. Let T∅ be a TM which always rejects, so L(T∅) = ∅. We
may assume T∅ ∉ P; otherwise, we carry out our argument using P. Because
P is not trivial there exists a TM T with T ∈ P. Using these machines
consider the following decider S for ATM:
S = “On input <M, w>:

1. Use M and w to construct the following TM Mw :
Mw = “ On input x:
1. Simulate M on w. If it halts and reject, reject.

If it accepts, proceed to stage 2.
2. Simulate T on x. If it accepts, accept.”

2. Use TM R to determine whether < Mw > ∈ P. If yes, accept. If no,
reject.”

Example Use of Rice’s Theorem

• Consider the language L = {<M> | M is a TM and
1011 ∈ L(Μ)}.

• This language contains some, but not all TM
encodings.

• It further has the property that for any M1 and M2
such that L(M1) = L(M2), then we have <M1> ∈ L
iff <M2> ∈ L.

• Therefore, by Rice’s Theorem it is undecidable.

The Recursion Theorem
• One interesting property of living things is that they can reproduce –

that is, they can produce “exact” copies of themselves.
• Can machines do this? As a first step:
Lemma. There is a computable function q:∑* →∑* , where if w is any

string q(w) is the description of a Turing Machine Pw that prints out
w and then halts.

Proof.
Q =“On input w:
1. Construct the following TM Pw.

Pw = “ On any input:
1. Erase the input.
2. Write w on the tape.
3. Halt.”

2. Output < Pw >.”

