Mapping Reducibility and The Recursion Theorem

CS154 Chris Pollett May 3, 2006.

Outline

- More on Mapping Reducibility
- Rice's Theorem
- Start of the Recursion Theorem

More on Mapping Reducibility

• We are now going to give some results about mapping reductions and give an example.

Theorem (*). If $A \leq_m B$ and *B* is decidable, then *A* is decidable.

Proof. Let M be a decider for B and let f be the reduction from A to B. A decider N for A can be defined as follows:

N = "On input *w*:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."
- Taking the contrapositive...

Corollary. If $A \leq_m B$ and A is undecidable, then B is undecidable.

An Example of Mapping Reducibility

- Recall we used a reduction from A_{TM} to show $HALT_{\text{TM}}$ is undecidable.
- We can rephrase this reduction as a mapping reducibility...
- What we need to do is come up with a function *F* that takes inputs of the form $\langle M, w \rangle$ and returns outputs of the form $\langle M', w' \rangle$, so that $\langle M, w \rangle$ is in A_{TM} iff $\langle M', w' \rangle$ is in $HALT_{\text{TM}}$.
- To do this, let *F* compute:
 - F = "On input $\langle M, w \rangle$:
 - 1. Construct the following machine M'.
 - 1. Run *M* on *x*.
 - 2. If *M* accepts, *accept*.
 - 3. If *M rejects*, enter an infinite loop."
 - 2. Output <*M*′, *w*>."

Mapping Reducibility and Turing Recognizability

Theorem.

- (a) If $A \leq_m B$ and B is Turing Recognizable, then A is Turing Recognizable.
- (b) If $A \leq_m B$ and B is co-Turing Recognizable, then A is co-Turing Recognizable.
- **Proof.** The proof is essentially the same as Theorem (*) that we did earlier.

Corollary.

- (a) If $A \leq_m B$ and A is not Turing Recognizable, then B is not Turing Recognizable.
- (b) If $A \leq_m B$ and A is not co-Turing Recognizable, then B is not co-Turing Recognizable.

Applications to EQ_{TM}

Theorem. EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

- **Proof.** First we show EQ_{TM} is not Turing recognizable. To do this we show that A_{TM} is mapping reducible to \overline{EQ}_{TM} . The reducing function *F* is as follows: F = " On input $\langle M, w \rangle$:
 - 1. Construct two machines: M_1 , which on any input *rejects* and M_2 which on any input erases the input and then simulates M on w and accepts if M does.
 - 2. Output $< M_1, M_2 >$ "
 - To see EQ_{TM} is not co-Turing recognizable we show A_{TM} is mapping reducible to EQ_{TM} . To do this consider the reduction G:

G = " On input *<M*, *w>*:

- 1. Construct two machines: M_1 , which on any input *accepts* and M_2 which on any input erases the input and then simulates *M* on *w* and accepts if *M* does.
- 2. Output $< M_1, M_2 >$ "

Rice's Theorem

- This theorem shows that almost any problem one could come up with connected to Turing Machines is undecidable.
- **Theorem.** Let *P* be a language such that there exists TM descriptions $\langle M \rangle \in P$ and $\langle M' \rangle \notin P$. Further assume that whenever we have two machines M_1 and M_2 such that $L(M_1) = L(M_2)$, then we have $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$. Then *P* is undecidable.
- **Proof.** Suppose we had a decider *R* for *P*. We show how to use *R* to build a decider for A_{TM} . Let T_{\emptyset} be a TM which always rejects, so $L(T_{\emptyset}) = \emptyset$. We may assume $T_{\emptyset} \notin P$; otherwise, we carry out our argument using \overline{P} . Because *P* is not trivial there exists a TM *T* with $T \in P$. Using these machines consider the following decider *S* for A_{TM} :

S = "On input *<M*, *w>*:

- 1. Use *M* and *w* to construct the following TM M_w :
 - $M_w =$ "On input *x*:
 - 1. Simulate *M* on *w*. If it halts and reject, *reject*. If it accepts, proceed to stage 2.
 - 2. Simulate *T* on *x*. If it accepts, *accept*."
- 2. Use TM *R* to determine whether $\langle M_w \rangle \in P$. If yes, *accept*. If no, *reject*."

Example Use of Rice's Theorem

- Consider the language $L = \{ \langle M \rangle \mid M \text{ is a TM and} \\ 1011 \in L(M) \}.$
- This language contains some, but not all TM encodings.
- It further has the property that for any M_1 and M_2 such that $L(M_1) = L(M_2)$, then we have $\langle M_1 \rangle \in L$ iff $\langle M_2 \rangle \in L$.
- Therefore, by Rice's Theorem it is undecidable.

The Recursion Theorem

- One interesting property of living things is that they can reproduce that is, they can produce "exact" copies of themselves.
- Can machines do this? As a first step:
- **Lemma.** There is a computable function $q: \Sigma^* \to \Sigma^*$, where if w is any string q(w) is the description of a Turing Machine P_w that prints out w and then halts.

Proof.

Q ="On input w:

- 1. Construct the following TM P_{w} .
 - $P_w =$ "On any input:
 - 1. Erase the input.
 - 2. Write *w* on the tape.
 - 3. Halt."
- 2. Output $< P_w >$."