Decidable Languages

CS154
Chris Pollett
pr 3, 2006.

>

Outline

e Introduction

e Decidable problems for Regular Languages

* Decidable problems for CFLs

Introduction

We have shown how it 1s possible to simulate
many different models of computation on a Turing
Machine.

Today we look at what sort of problems can be
decided by Turing Machines.

Recall this 1s a stronger notion than recognized.

To decide a language we need to be able to accept
if the string 1s in the language and reject if it 1s
not.

DFA Acceptance

 The acceptance problem for DFAsS, 1s the problem of
determining if a string 1s in the language of some DFA.

e Let Appa={<B,w>IB 1s a DFA that accepts input string
w}.

Theorem A, 1s decidable.

Proof Idea Let M be the TM that does the following:
“On input <B,w>, where B i1s a DFA and w 1s a string:
I. Simulate Bonw

2. If the sitmulation ends in an accept state, accept. If it ends
In a nonaccepting state, reject.”

NFA Acceptance

. Similarly, we can let Agp,={<N,w>| N 1s an NFA that accepts input
string w }.

Theorem Ay, is decidable.

Proof Let N be the TM that does the following:

“On input <N,w>, where N 1s a NFA and w is a string:

1. Convert N to an equivalent DFA C using the power set construction.
Simulate C on w

3. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Regular Expression Acceptance

e Let Agex={<R,w> | R is a regular expression that generates string
w}.

Theorem Agp1s decidable.
Proof Let P be the TM that does the following:

(14
On input <R,w>, where R is a regular expression and w is a string:

1. Convert R to an equivalent DFA C using the regular expression to
NFA conversion algorithm followed by the power set construction.

Simulate C on w.

3. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

Emptiness Testing

. Another interesting question about a regular language is whether or not it is
empty.

. Supposedly, somebody in the 60’s at MIT wrote a very complicated thesis
about some class of languages showing all its great properties.

. Later it was shown this class of languages was empty. So the thesis was
bogus.

. Let Eppa={<A>|Ais a DFA and L(A) is empty }.
Theorem E ., is decidable.

Proof A DFA accepts some string iff reaching an accept state from the start state
by traveling along the arrows of the DFA is possible. Let T be the following
TM which tests for this:

T=“On input <A> where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:

1. Mark any state that has a transition coming into it from any state that is
already marked.

3. If no accept state is marked, accept, otherwise, reject.”

Equality Testing

Emptiness testing can be used to check if two DFAs, A, B, recognize
the same language.

Let L(C) = (L(A)NL(B))U(L(B)N L(A))
Notice L(C) is empty iff L(A) =L(B).
Let EQpra={<A,B>1| A and B are DFAs and L(A) = L(B)}.

Theorem EQ, is decidable.
Proof Let F be the TM which does the following:
F=“On input <A,B>, where A and B are DFAs.

1.
2.

Construct C as described above.

Run T of the last slide and accept or reject as it does.”

CFG Acceptance

* We now turn to the question of decidability for problems
related to context-free languages.

e Let Apg={<G,w>1G 1s a CFG that generates string w}.
Theorem A . 1s decidable.

Proof Let S be the following Turing machine:

S= “On input <G,w>, where G i1s a CFG and w 1s a string:

1. Convert G to Chomsky Normal Form.

2. Run the CYK algorithm according to G on input w.

3. Accept it this algorithm accepts; reject if it rejects.”

