
Decidable Languages

CS154
Chris Pollett
Apr 3, 2006.

Outline

• Introduction
• Decidable problems for Regular Languages
• Decidable problems for CFLs

Introduction

• We have shown how it is possible to simulate
many different models of computation on a Turing
Machine.

• Today we look at what sort of problems can be
decided by Turing Machines.

• Recall this is a stronger notion than recognized.
• To decide a language we need to be able to accept

if the string is in the language and reject if it is
not.

DFA Acceptance
• The acceptance problem for DFAs, is the problem of

determining if a string is in the language of some DFA.
• Let ADFA={<B,w> | B is a DFA that accepts input string

w}.
Theorem ADFA is decidable.
Proof Idea Let M be the TM that does the following:
“On input <B,w>, where B is a DFA and w is a string:
1. Simulate B on w
2. If the simulation ends in an accept state, accept. If it ends

in a nonaccepting state, reject.”

NFA Acceptance
• Similarly, we can let ANFA={<N,w> | N is an NFA that accepts input

string w}.

Theorem ANFA is decidable.
Proof Let N be the TM that does the following:
“On input <N,w>, where N is a NFA and w is a string:
1. Convert N to an equivalent DFA C using the power set construction.
2. Simulate C on w
3. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

Regular Expression Acceptance
• Let AREX={<R,w> | R is a regular expression that generates string

w}.

Theorem AREXis decidable.
Proof Let P be the TM that does the following:
“On input <R,w>, where R is a regular expression and w is a string:
1. Convert R to an equivalent DFA C using the regular expression to

NFA conversion algorithm followed by the power set construction.
2. Simulate C on w.
3. If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”

Emptiness Testing
• Another interesting question about a regular language is whether or not it is

empty.
• Supposedly, somebody in the 60’s at MIT wrote a very complicated thesis

about some class of languages showing all its great properties.
• Later it was shown this class of languages was empty. So the thesis was

bogus.
• Let EDFA={<A> | A is a DFA and L(A) is empty }.
Theorem EDFA is decidable.
Proof A DFA accepts some string iff reaching an accept state from the start state

by traveling along the arrows of the DFA is possible. Let T be the following
TM which tests for this:

T= “On input <A> where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:

1. Mark any state that has a transition coming into it from any state that is
already marked.

3. If no accept state is marked, accept; otherwise, reject.”

Equality Testing
• Emptiness testing can be used to check if two DFAs, A, B, recognize

the same language.
• Let
• Notice L(C) is empty iff L(A) =L(B).
• Let EQDFA={<A,B> | A and B are DFAs and L(A) = L(B)}.
Theorem EQDFA is decidable.
Proof Let F be the TM which does the following:
F= “On input <A,B>, where A and B are DFAs.
1. Construct C as described above.

2. Run T of the last slide and accept or reject as it does.”

CFG Acceptance

• We now turn to the question of decidability for problems
related to context-free languages.

• Let ACFG={<G,w> | G is a CFG that generates string w}.
Theorem ACFG is decidable.
Proof Let S be the following Turing machine:
S= “On input <G,w>, where G is a CFG and w is a string:
1. Convert G to Chomsky Normal Form.
2. Run the CYK algorithm according to G on input w.
3. Accept it this algorithm accepts; reject if it rejects.”

