
Post’s Correspondence Problem

CS154
Chris Pollett
May 1, 2006.



Outline

• More on Post Correspondence Problem
• Mapping Reducibility



Undecidability of PCP
Theorem. PCP is undecidable.
Proof. We show via computation histories that if PCP is decidable so is

ATM, thus giving a contradiction. Given an input <M, w> for ATM we
will construct an instance of PCP which will have a match iff  M
accepts w. Further, the string of the match which be an accepting
computation history of M on w.

To simplify our problem we will consider the following
modifications to ATM and PCP:

1. We assume M on input w never tries to move left off the tape.
2. If w = ε, we use the string ‘_’ in place of w in the construction.
3. We modify PCP to require that a match starts with the first domino.
…



More Undecidability of PCP
Call the instance of PCP that we are building P.
• Put [#| #q0w1..wn#] as the first domino of the  PCP instance. Playing this

domino first will force the string to look like an initial configuration of M
on w.

Next we add dominos to handle the part of the configuration where that the TM
might change

2. For every a,b in the tape alphabet, and every states q, r of M where
q ≠ qreject, if δ(q, a) = (r, b, R), we put [qa | br] into P.

3. For every a,b,c in the tape alphabet and every states q, r in M where
q ≠ qreject, if δ(q, a) = (r, b, L), we put [cqa | rcb] into P.

Next we add dominos to copy the unchanged parts of configurations and to copy
the end of configuration markers

4. For every a in the tape alphabet, we put [a | a] into P.
5. Put [#|#] and [#|_#] into P. (The second is to handle if the simulate where

the size of a configuration grows).
Lastly, we add dominos, so that once we get to an accept state we have a sequence

of configurations with an ever smaller number of squares so we can “catch
up” the top row with the bottom row:

6. For every tape symbol a we have dominos [aqaccept | qaccept ] and
[qaccepta | qaccept ] and to complete the match we have [qaccept## | qaccept#]



Examples of these Dominos

• Suppose M on input w=0100 starts in state q0.
• Suppose further in this state reading a 0 it goes

into state q7 writes a 2 and moves right.
• The first 5 kinds of dominos could be played to

get the following partial configuration history:
# q0 0 1 0 0 #
# q0 0 1 0 0 # 2 q7 1 0 0 #



Eliminating the First Domino
Condition

• Suppose we have an instance
P = {[t1| b1], [t2| b2], .., [tk| bk]}

of PCP where we’d like the first domino to be
played and we like to make it into a “real”
instance P* of PCP without this condition.

• Let * and $ be new symbols not appearing in the
ti’s and bi’s. Given a string u = u1..un. Define
*u = *u1* u2*...*un, *u* = *u1* u2*...*un*, and
u* = u1* u2*...*un*.

• Then P* = {[*t1| *b1*], [*t2| b2*] .., [*tk| bk*],
[*$,$]} will have a match in the usual PCP iff P
had a match in the modified PCP.



End of the PCP reduction
• So assume we had a decision procedure D for PCP.
• Consider the machine:

S=“On input <M, w>:
1. Construct an instance <P*> of PCP following the construction

of the last few slides.
2. Run D on <P*>.
3. If D accepts, accept; else if D rejects, reject.”

• This machine is a decision procedure for ATM, which we
know cannot exist.

• Therefore, the assumption D exists must be false.
• Therefore, PCP is undecidable.



Mapping Reducibility

• So far we have used the notion of reducibility to show
many problems are undecidable.

• To study reduction more formally we are now going to
work towards a more precise definition of reducibility
called mapping reducibility.

• We need one definition before we define mapping
reducibility



Computable Functions

Definition. A function f: ∑* → ∑* is a computable
function if some Turing machine M, on every
input w, halts with just f(w) on its tape.

Example.  The function <m, n> → m + n is
computable.

Example.  The function <M> → <M′> which if <M>
is the encoding of a TM maps this encoding to a
new encoding of a TM for the same language but
which does not try to move left off the tape.



Formal Definition of Mapping
Reducibility

Definition. The language A is mapping
reducible to the language B, written A≤mB,
if there is a computable function f:∑* → ∑*,
where for every w,

w ∈ A iff f(w) ∈ B.
The function f is called the reduction of A to
B.


