Post's Correspondence Problem

CS154 Chris Pollett May 1, 2006.

Outline

- More on Post Correspondence Problem
- Mapping Reducibility

Undecidability of PCP

Theorem. PCP is undecidable.

. . .

Proof. We show via computation histories that if *PCP* is decidable so is A_{TM} , thus giving a contradiction. Given an input $\langle M, w \rangle$ for A_{TM} we will construct an instance of *PCP* which will have a match iff *M* accepts *w*. Further, the string of the match which be an accepting computation history of *M* on *w*.

To simplify our problem we will consider the following modifications to A_{TM} and *PCP*:

- 1. We assume *M* on input w never tries to move left off the tape.
- 2. If $w = \varepsilon$, we use the string '_' in place of w in the construction.
- 3. We modify *PCP* to require that a match starts with the first domino.

More Undecidability of PCP

Call the instance of *PCP* that we are building *P*.

• Put $[\#| \#q_0w_1...w_n \#]$ as the first domino of the *PCP* instance. Playing this domino first will force the string to look like an initial configuration of *M* on *w*.

Next we add dominos to handle the part of the configuration where that the TM might change

- 2. For every *a*,*b* in the tape alphabet, and every states *q*, *r* of *M* where $q \neq q_{reject}$, if $\delta(q, a) = (r, b, R)$, we put $[qa \mid br]$ into *P*.
- 3. For every a,b,c in the tape alphabet and every states q, r in M where $q \neq q_{reject}$, if $\delta(q, a) = (r, b, L)$, we put [cqa | rcb] into P.

Next we add dominos to copy the unchanged parts of configurations and to copy the end of configuration markers

- 4. For every a in the tape alphabet, we put $[a \mid a]$ into P.
- 5. Put [#|#] and [#l_#] into *P*. (The second is to handle if the simulate where the size of a configuration grows).
- Lastly, we add dominos, so that once we get to an accept state we have a sequence of configurations with an ever smaller number of squares so we can "catch up" the top row with the bottom row:
- 6. For every tape symbol *a* we have dominos $[aq_{accept} | q_{accept}]$ and $[q_{accept}a | q_{accept}]$ and to complete the match we have $[q_{accept}\# | q_{accept}\#]$

Examples of these Dominos

- Suppose *M* on input w=0100 starts in state q_0 .
- Suppose further in this state reading a 0 it goes into state q₇ writes a 2 and moves right.
- The first 5 kinds of dominos could be played to get the following partial configuration history:

Eliminating the First Domino Condition

• Suppose we have an instance

 $P = \{[t_1 | b_1], [t_2 | b_2], ..., [t_k | b_k]\}$ of *PCP* where we'd like the first domino to be played and we like to make it into a "real" instance *P*^{*} of *PCP* without this condition.

- Let * and \$ be new symbols not appearing in the t_i 's and b_i 's. Given a string $u = u_1..u_n$. Define $*u = *u_1 * u_2 *... *u_n, *u^* = *u_1 * u_2 *... *u_n *$, and $u^* = u_1 * u_2 *... *u_n *$.
- Then $P^* = \{[*t_1 | *b_{1*}], [*t_2 | b_2^*] \dots, [*t_k | b_k^*], [*\$,\$]\}$ will have a match in the usual *PCP* iff *P* had a match in the modified PCP.

End of the PCP reduction

- So assume we had a decision procedure *D* for *PCP*.
- Consider the machine:

S="On input *<M*, *w*>:

- 1. Construct an instance $\langle P^* \rangle$ of *PCP* following the construction of the last few slides.
- 2. Run D on $\langle P^* \rangle$.
- 3. If *D* accepts, **accept**; else if *D* rejects, **reject**."
- This machine is a decision procedure for A_{TM} , which we know cannot exist.
- Therefore, the assumption *D* exists must be false.
- Therefore, *PCP* is undecidable.

Mapping Reducibility

- So far we have used the notion of reducibility to show many problems are undecidable.
- To study reduction more formally we are now going to work towards a more precise definition of reducibility called **mapping reducibility**.
- We need one definition before we define mapping reducibility

Computable Functions

- **Definition.** A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** if some Turing machine *M*, on every input w, halts with just f(w) on its tape.
- **Example.** The function $\langle m, n \rangle \rightarrow m + n$ is computable.
- **Example.** The function $\langle M \rangle \rightarrow \langle M' \rangle$ which if $\langle M \rangle$ is the encoding of a TM maps this encoding to a new encoding of a TM for the same language but which does not try to move left off the tape.

Formal Definition of Mapping Reducibility

Definition. The language *A* is **mapping** reducible to the language *B*, written $A \le_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every *w*, $w \in A$ iff $f(w) \in B$.

The function f is called the reduction of A to B.