
Context Free Grammars

CS154
Chris Pollett
Mar 1, 2006.

Outline

• Formal Definition
• Ambiguity
• Chomsky Normal Form

Formal Definitions
• A context free grammar is a 4-tuple (V, Σ, R, S) where

1. V is a finite set called the variables
2. Σ is a finite set, disjoint from V called the terminals.
3. R is a finite set of rules, with each rule being a pair consisting of

a variable and a string of variables and terminals, and
4. S∈ V is a start variable.

• For a rule A--> w where w is a string over (V∪Σ), and for other
strings u and v, we say uAv yields uwv, written uAv => uwv. We
say u derives v, written u=>*v, if there is a finite sequence:

u => u1 => u2 => … => uk=> v.

Example

• Consider the grammar G= (V, Σ, R, <EXPR>)
where V is
{<EXPR>, <TERM>, <FACTOR>}
and Σ is (a, +, x, (,))
and the rules are:
<EXPR> --> <EXPR> + <TERM> | <TERM>
<TERM> --> <TERM> x <FACTOR> | <FACTOR>
<FACTOR> --> (<EXPR>) | a

• One can verify that <EXPR> =>* (a+a) x a.

Techniques for Designing CFGs
• Many CFLs are the union of simpler CFLs. So one can

design a CFG for each in turn with start states S1, S2,… Sn
.Then take the union of the rules and add a new start
variable with a rule S--> S1| S2|… |Sn . For example, take
the language {0n1n | n>=0} ∪ {1n0n | n>=0}. First we could
make CFGs for each language separately. Say, S1 --> 0 S1
1|ε and S2 --> 1 S2 0|ε. Then add the rule S--> S1| S2.

• A CFG for a language that is regular can be had by first
make a DFA for the language. For each state qi make a
variable Ri and for each transition δ(qi ,a) = qj make a rule
Ri --> a Rj. Have the start state variable be R0. Add rules Ri
--> ε for each final state.

More Techniques for Designing
CFGs

• For CFL which contain two substrings
which are linked in the sense that a machine
for such a language would need to
remember information about one on the
strings to verify information about the other
substring, you might want to consider rules
of the form R --> u R v. Here u and v
should satisfy the property you are trying to
verify.

Ambiguity
• Sometime a grammar can generate string in more than one

way.
• Such a string will have several different parse trees. As the

parse tree is supposed to give us the meaning, such a string
would have more than one meaning.

• A string with more than one parse tree with respect to a
grammar is said to be ambiguously derived in that
grammar.

• For example, consider <EXPR> --> <EXPR>+ <EXPR>|
<EXPR> x <EXPR>|(<EXPR>) |a.

• Then a + a x a can be derived with two different parse
trees.

Leftmost Derivations
• We want to formalize the notion of ambiguity in terms of derivations

rather than parse trees as derivations are easier to work with
syntactically.

• We say that a derivation of a string w in a grammar G is a leftmost
derivation if at every step the leftmost remaining variable is the one
replaced.

• A string w is derived ambiguously in G if it has two or more different
leftmost derivations. A CFG is called ambiguous if it generates some
string ambiguously.

• There are often many different CFGs for the same language. Even
though one of these may be ambiguous some other may be
unambiguous. We say a language is inherently ambiguous if one can
never find an unambiguous CFG for it. One of the problems in the
book asks you to prove that {aibjck| i=j or j=k} is inherently
ambiguous.

Chomsky Normal Form

• When working with CFGs it is convenient to have
them in some kind of normal form in order to do
proofs.

• Chomsky Normal Form is often used.
• A CFG is in Chomsky Normal Form if every

rule is of the form A-->BC or of the form A-->a,
where A,B,C are any variables and a is a terminal.
In addition the rule S--> ε is permitted.

Conversion to Chomsky Normal
Form

Any CFL L can be generated by a CFG in Chomsky Normal Form
Proof Let G be a CFG for L. First we add a new start variable and rule S0

-->S. This guarentees the start variable does not occur on the RHS of
any rule. Second we remove any ε-rules A--> ε where A is not the
start variable. Then for each occurrence of A on the RHS of a rule, say
R--> uAv, we add a rule R--> uv. We do this for each occurrence of an
A. So for R--> uAvAw, we would add the rules R-->uvAw, R-->
uAvw, R--> uvw. If we had the rule R-->A, add the rule R--> ε unless
we previously removed the rule R--> ε. Then we repeat the process
with R. Next we handle unit rule A--> B. To do this, we delete this
rule and then for each rule of the form B--> u, we add then rule A-->u,
unless this is a unit rule that was previously removed. We repeat until
we eliminate unit rules. Finally, we convert all the remaining rules to
the proper form. For any rule A--> u1u2 … uk where k>=3 and each ui
is a variable or a terminal symbol, we replace the rule with A --> u1A1,
A1 --> u2 A2, … Ak-2 --> uk-1uk. For any rule with k=2, we replace any
nonterminal with a new variable Ui and a rule Ui --> ui.

