Context Free Grammars

CS154
Chris Pollett
Mar 1, 2006.

Outline

e Formal Definition
 Ambiguity
e Chomsky Normal Form

Formal Definitions

A context free grammar is a 4-tuple (V, 2, R, S) where
1. Vs afinite set called the variables
2 1s a finite set, disjoint from V called the terminals.

3. Ris a finite set of rules, with each rule being a pair consisting of
a variable and a string of variables and terminals, and

4. S& V is a start variable.

For a rule A--> w where w is a string over (VUZX), and for other
strings u and v, we say uAv yields uwv, written uAv =>uwv. We
say u derives v, written u=>"v, if there is a finite sequence:

u=>u,=>u,=>...=>u=>V.

Example

e Consider the grammar G= (V, 2, R, <EXPR>)
where V 1s

{<EXPR>, <TERM>, <FACTOR>}
and 2 1s (a, +, X, (,))
and the rules are:
<EXPR> --> <EXPR> + <TERM> | <TERM>
<TERM> --> <TERM> x <FACTOR> | <FACTOR>
<FACTOR> --> (<EXPR>) | a

e One can verify that <EXPR> =>" (a+a) X a.

Techniques for Designing CFGs

e Many CFLs are the union of simpler CFLs. So one can
design a CFG for each in turn with start states S,, S,,... S,
.Then take the union of the rules and add a new start
variable with a rule S--> S| S,l... IS, . For example, take
the language {0"1" | n>=0} U {1"0"| n>=0}. First we could
make CFGs for each language separately. Say, S, -->0 S,
lle and S, --> 1 S, Ole. Then add the rule S--> S, S,

A CFG for a language that 1s regular can be had by first
make a DFA for the language. For each state g. make a
variable R; and for each transition 9(q; ,a) = g;make a rule
R;-->a R;. Have the start state variable be R,. Add rules R;
--> ¢ for each final state.

More Techniques for Designing
CFGs

* For CFL which contain two substrings
which are linked 1n the sense that a machine
for such a language would need to
remember information about one on the
strings to verify information about the other
substring, you might want to consider rules
of the form R -->u R v. Here u and v

should satisfy the property you are trying to
verity.

Ambiguity

Sometime a grammar can generate string in more than one
way.
Such a string will have several different parse trees. As the

parse tree 1s supposed to give us the meaning, such a string
would have more than one meaning.

A string with more than one parse tree with respect to a
grammar is said to be ambiguously derived in that
grammar.

For example, consider <EXPR> --> <EXPR>+ <EXPR>|
<EXPR> x <EXPR>|(<EXPR>) la.

Then a + a x a can be derived with two different parse
trees.

[eftmost Derivations

We want to formalize the notion of ambiguity in terms of derivations
rather than parse trees as derivations are easier to work with
syntactically.

We say that a derivation of a string w in a grammar G is a leftmost
derivation if at every step the leftmost remaining variable is the one
replaced.

A string w is derived ambiguously in G if it has two or more different
leftmost derivations. A CFG is called ambiguous if it generates some
string ambiguously.

There are often many different CFGs for the same language. Even
though one of these may be ambiguous some other may be
unambiguous. We say a language is inherently ambiguous if one can
never find an unambiguous CFG for it. One of the problems in the
book asks you to prove that {a'bickl i=j or j=k} is inherently
ambiguous.

Chomsky Normal Form

* When working with CFGs it 1s convenient to have
them in some kind of normal form in order to do
proofs.

 Chomsky Normal Form is often used.

A CFG is in Chomsky Normal Form if every
rule 1s of the form A-->BC or of the form A-->a,
where A,B,C are any variables and a 1s a terminal.
In addition the rule S--> ¢ 1s permitted.

Conversion to Chomsky Normal
Form

Any CFL L can be generated by a CFG in Chomsky Normal Form

Proof Let G be a CFG for L. First we add a new start variable and rule S,
-->S. This guarentees the start variable does not occur on the RHS of
any rule. Second we remove any e-rules A--> & where A is not the
start variable. Then for each occurrence of A on the RHS of a rule, say
R-->uAv, we add a rule R--> uv. We do this for each occurrence of an
A. So for R--> uAvAw, we would add the rules R-->uvAw, R-->
uAvw, R-->uvw. If we had the rule R-->A, add the rule R--> ¢ unless
we previously removed the rule R--> €. Then we repeat the process
with R. Next we handle unit rule A--> B. To do this, we delete this
rule and then for each rule of the form B--> u, we add then rule A-->u,
unless this is a unit rule that was previously removed. We repeat until
we eliminate unit rules. Finally, we convert all the remaining rules to
the proper form. For any rule A-->u,u, ... u, where k>=3 and each ui
is a variable or a terminal symbol, we replace the rule with A -->u,A,,
A, -->u, A, ... A, -->u,_,u,. For any rule with k=2, we replace any
nonterminal with a new variable U, and a rule U, --> u..

