Context Free Grammars

CS154
Chris Pollett
Mar 1, 2006.

Outline

- Formal Definition
- Ambiguity
- Chomsky Normal Form

Formal Definitions

- A context free grammar is a 4-tuple (V, $\Sigma, \mathrm{R}, \mathrm{S})$ where

1. V is a finite set called the variables
2. $\quad \Sigma$ is a finite set, disjoint from V called the terminals.
3. R is a finite set of rules, with each rule being a pair consisting of a variable and a string of variables and terminals, and
4. $\mathrm{S} \in \mathrm{V}$ is a start variable.

- For a rule $\mathrm{A}-->\mathrm{w}$ where w is a string over $(\mathrm{V} \cup \Sigma)$, and for other strings u and v, we say uAv yields uwv, written $u A v=>u w v$. We say u derives v, written $u=>^{*} v$, if there is a finite sequence:
$u=>u_{1}=>u_{2}=>\ldots=>u_{k}=>v$.

Example

- Consider the grammar $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{R},<\mathrm{EXPR}>)$ where V is
$\{<$ EXPR $>,<$ TERM $>,<$ FACTOR $>\}$
and Σ is $(\mathrm{a},+, \mathrm{x},()$,
and the rules are:
<EXPR $>--><$ EXPR $>+<$ TERM $>$ I <TERM $>$
$<$ TERM $>--><$ TERM $>\mathrm{x}<$ FACTOR $>$ I $<$ FACTOR $>$
$<$ FACTOR> --> (<EXPR>) I a
- One can verify that $<E X P R>=>^{*}(a+a) x$ a.

Techniques for Designing CFGs

- Many CFLs are the union of simpler CFLs. So one can design a CFG for each in turn with start states $S_{1}, S_{2}, \ldots S_{n}$.Then take the union of the rules and add a new start variable with a rule $S-->S_{1}\left|S_{2}\right| \ldots \mid S_{n}$. For example, take the language $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n}>=0\right\} \cup\left\{1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n}>=0\right\}$. First we could make CFGs for each language separately. Say, $S_{1}-->0 S_{1}$ $1 \mid \varepsilon$ and $S_{2}-->1 S_{2} 0 \mid \varepsilon$. Then add the rule $S-->S_{1} \mid S_{2}$.
- A CFG for a language that is regular can be had by first make a DFA for the language. For each state q_{i} make a variable R_{i} and for each transition $\delta\left(q_{i}, a\right)=q_{j}$ make a rule $\mathrm{R}_{\mathrm{i}}-->a \mathrm{R}_{\mathrm{j}}$. Have the start state variable be R_{0}. Add rules R_{i} $-->\varepsilon$ for each final state.

More Techniques for Designing CFGs

- For CFL which contain two substrings which are linked in the sense that a machine for such a language would need to remember information about one on the strings to verify information about the other substring, you might want to consider rules of the form $\mathrm{R} \mathrm{-->} \mathrm{u}$ R v. Here u and v should satisfy the property you are trying to verify.

Ambiguity

- Sometime a grammar can generate string in more than one way.
- Such a string will have several different parse trees. As the parse tree is supposed to give us the meaning, such a string would have more than one meaning.
- A string with more than one parse tree with respect to a grammar is said to be ambiguously derived in that grammar.
- For example, consider $<$ EXPR $>--><E X P R>+<$ EXPR >1 $<$ EXPR $>$ x $<$ EXPR $>\mid(<$ EXPR $>)$ la.
- Then a +a x a can be derived with two different parse trees.

Leftmost Derivations

- We want to formalize the notion of ambiguity in terms of derivations rather than parse trees as derivations are easier to work with syntactically.
- We say that a derivation of a string w in a grammar G is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.
- A string w is derived ambiguously in G if it has two or more different leftmost derivations. A CFG is called ambiguous if it generates some string ambiguously.
- There are often many different CFGs for the same language. Even though one of these may be ambiguous some other may be unambiguous. We say a language is inherently ambiguous if one can never find an unambiguous CFG for it. One of the problems in the book asks you to prove that $\left\{a^{a} b^{j} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$ is inherently ambiguous.

Chomsky Normal Form

- When working with CFGs it is convenient to have them in some kind of normal form in order to do proofs.
- Chomsky Normal Form is often used.
- A CFG is in Chomsky Normal Form if every rule is of the form $\mathrm{A}-->\mathrm{BC}$ or of the form $\mathrm{A}-->\mathrm{a}$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are any variables and a is a terminal. In addition the rule $S-->\varepsilon$ is permitted.

Conversion to Chomsky Normal

Form

Any CFL L can be generated by a CFG in Chomsky Normal Form
Proof Let G be a CFG for L. First we add a new start variable and rule S_{0} -->S. This guarentees the start variable does not occur on the RHS of any rule. Second we remove any ε-rules A--> ε where A is not the start variable. Then for each occurrence of A on the RHS of a rule, say R-->uAv, we add a rule R--> uv. We do this for each occurrence of an A. So for R--> uAvAw, we would add the rules R-->uvAw, R--> uAvw, $\mathrm{R}-->$ uvw. If we had the rule $\mathrm{R}-->\mathrm{A}$, add the rule $\mathrm{R}-->\varepsilon$ unless we previously removed the rule $\mathrm{R}-->\varepsilon$. Then we repeat the process with R. Next we handle unit rule A--> B. To do this, we delete this rule and then for each rule of the form $\mathrm{B}-->\mathrm{u}$, we add then rule $\mathrm{A}-->\mathrm{u}$, unless this is a unit rule that was previously removed. We repeat until we eliminate unit rules. Finally, we convert all the remaining rules to the proper form. For any rule $A-->u_{1} u_{2} \ldots u_{k}$ where $k>=3$ and each ui is a variable or a terminal symbol, we replace the rule with $\mathrm{A}-->\mathrm{u}_{1} \mathrm{~A}_{1}$, $A_{1}-->u_{2} A_{2}, \ldots A_{k-2}-->u_{k-1} u_{k}$. For any rule with $k=2$, we replace any nonterminal with a new variable U_{i} and a rule $U_{i}-->u_{i}$.

