Graphs; Strings and Languages; Boolean Logic; Proofs.

CS154

Chris Pollett

Feb. 1, 2006.

Outline

- Graphs
- Strings and Languages
- Boolean Logic
- Definitions, Theorems, Proofs

Graphs

- An undirected graph (or just a graph) is a set of points with lines connecting some of the points. The points are sometimes called nodes or vertices.

- Formally, could view as an ordered pair (V, E) where V is a set of vertices and E is a set of sets of the form $\{\mathrm{v}, \mathrm{w}\}$ where v and w are in V .
- A directed graph (digraph) has edges which are directed from one node to another one. To achieve this using sets, have E be a set of ordered pairs (v, w).

More Graphs

- The degree of a vertex is the number of edges that go into it. For directed graphs have both an in-degree and an outdegree.
- Both edges and vertices in a graph can be labeled. In which case the graph is called a labeled graph.

- A subgraph of a graph (V, E) is a graph $\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ such that V^{\prime} is a subset of V and E^{\prime} is a subset of E.
- A path is a sequence of nodes connected by edges.
- A simple path is a path that does not repeat edges.

Still more graphs

- A graph is connected if any two points in it are connected by a path.
- In the case of digraphs, one has directed paths, and the notion of being strongly connected.
- A cycle is a path which begins and ends at the same node. A cycle is simple if it does not repeat nodes except the end point twice.
- A tree is a connected graph without cycles. In such a graph one may designate a root node, and any other node with degree 1 is called a leaf.

Strings

- Strings of characters are one of the fundamental building blocks of computer science.
- For this class, we will define an alphabet to be some nonempty finite set. For example,

$$
\begin{aligned}
\Sigma & =\{0,1\} \\
\Sigma & =\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{~m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{~s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}
\end{aligned}
$$

- The members of this set are called the symbols of the alphabet.
- A string over an alphabet is a finite sequence of symbols from that alphabet. For example, 0100.
- The length of a string $w,|w|$ is the number of symbols it contains.
- The empty string is written as ε.

Strings and Languages

- The reverse of a string $\mathrm{w}, \mathrm{w}^{\mathrm{R}}$, is the string consistent of the symbols of w in reverse order: $001^{\mathrm{R}}=100$.
- A string is z is a substring of w if z appear consecutively within w. So 011 is a substring 1001101.
- The concatenation of two string x and $y, x y$, is the string consisting of the symbols in x followed by the symbols of y.
- We write x^{k} to denote x concatenated to itself k times.
- A language is a set of string.

Boolean Logic

- Is a logic based on two values TRUE or FALSE. (sometimes we use 1 and 0).
- These are called Boolean values.
- We also have boolean operations:

NOT (negation) $\neg \mathrm{x}$ is TRUE iff x is false
AND (conjunction) $\mathrm{x} \wedge \mathrm{y}$ iff both x and y are true
OR (disjunction) $x \vee y$ iff at least one of x or y is true
XOR (exclusive OR) $x \oplus y$ iff exactly one of x or y is true
Equality $\mathrm{x} \leftrightarrow \mathrm{y}$ iff x and y have the same value
Implications $\mathrm{x} \rightarrow \mathrm{y}$ iff x is less than or equal to y

Definitions, Theorems, Proofs

- Definitions describes the objects and notions that we use. We want our definitions to be as precise as possible.
- Once we have made some definitions we make mathematical statements involving them.
- A proof is a convincing logical argument that a statement is true.
- A theorem is a mathematical statement which has been proved true.
- A lemma is a simple mathematical statement which has been proved true and which will be used in the proof of a theorem.
- A corollary is a mathematical statement which can be proved easily once some theorem is known.

Finding proofs

- Example: For every graph G, the sum of the degrees of all the nodes in G is an even number.
- Might approach problem by checking cases like when graph has a small number of vertices. One might then notice each edge contributes two to the total sum and that the sum of degrees $=2^{*}$ number of edges in graph.
- Types of proofs:
- by construction: example, there is a graph consisting of n nodes with only one cycle. Proof: let $V=\{1, \ldots, n\}$, let $E=\{\{1,2\},\{2,3\}, \ldots\{n-$ $1, \mathrm{n}\}\} \cup\{\{1, \mathrm{n}\}\}$.
- by contradiction: example irrationality of $2^{1 / 2}$. Idea if not can assume $2^{1 / 2}=\mathrm{m} / \mathrm{n}$ where m and n share no common factor. In which case, one is odd, the other even. Squaring both sides gives: $2 \mathrm{n}^{2}$ $=\mathrm{m}^{2}$, so m is even because square of an odd number is odd. So $\mathrm{m}=2 \mathrm{k}$, so $2 n^{2}=(2 k)^{2}=4 k^{2}$. So $n^{2}=2 k^{2}$ implying n is also even, giving a contradiction.
- by induction:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

You should try to work out.

