
CS152 HW4

1. See bang-bang.scm

2. (6.32) Is it possible to write a tail-recursive version of the classic quicksort algorithm? Why or
why not?

It is possible to write a tail-recursive version of quicksort because the last 2 procedures in
quicksort are recursive calls on each half divided by the pivot, making it tail recursive.

3.

This example shows that switch cases can be used to simplify a loop by taking advantage of fall
through. Although programming languages should permit this, It is not intuitive to interleave a
loop and switch this way. Automatic fall through is a good idea when certain scenarios only need
to ignore the cases before the target case. Since fall through can be stopped with a break in the
code, it should be up to the programmer to decide if fall through is needed.

4.

Under structural equivalence, the compiler will consider A, B, C and D to have compatible types.
Under strict name equivalence, the compiler will consider A and B to have compatible types.
Under loose name equivalence, the compiler will consider A, B, and C to have compatible types.

5.

No, it does not create an alias type, rather it defines the type cell from the declaration in line 1.
Even under strict name equivalence, x and y have the same type since they have the same type
definition: cell.

6. See queue.rs

7.

a) mult (r2, r2, 40) // r2 *= 40
sll (r3, r3, 2) // r3 <<= 2
add (r1, r1, r3) // r1+=r3
add (r1, r1, r2) // r1+=r2
r1 := *r1

b) sll (r2, r2, 2) // r2 <<=2
add (r1, r1, r2) // r1+=r2
r1:= *r1

sll (r3, r3, 2) // r3 <<=2
add (r1, r1, r3) // r1+=r3
r1:= *r1

The first code sequence (row-major contiguous allocation) will be faster because it only
loads once instead of twice since loading is a very costly operation.

8. See log-min.scm

9. See rotation-filter.scm

10. See permutation.scm

