214 (a) LL:E->(E)E|[EJE|{E}E |¢

LR: E -> E(E) | E[E] | E{E} | &

(b)
([{
E (E)E [E]E {E}E
([{
E E(E) E[E] E{E}
(c) LL Tree:
E
{EN)E
| E | : | | %\

& (
[

E) E g (E)
E 1 E £ (E) E

£ & £ 1

(d) E->(E->(E->({E->(IE -> (O(E -> (U(MIE -> ((MDE -> (UMNE ->
(ONIE-> (OMNNE -> (MNDE -> [CNIE -> [NIOE -> ([INIO)E ->
()

LR Tree

E
E (E)
/‘\ /]\
E [E 1 E (E
///]\\\
E (E) 2 e e
//\
£ E (E)
TN TR
E [E] E [E 1
e y e e

(d) E->E)->E))->E()->E(() -> EI(() -> E[I(0) -> E)1(() -> EN(O) -> ENO) ->
ENO) -> EDIO) -> ENNO) -> EXINDO) -> EDMNIG) -> EQNNO) ->
()

3.7 (a) When he calls the reverse function, it creates a new list and the original
unreversed list remains loaded in memory, causing a leak.

(b) The reverse function changes the pointer passed to it to point to the tail of
the newly reversed list, so when he tries delete_list(L), it deletes the
reversed list he just created. Then, after assigning L = T, L points to the
deallocated tail of the list he just deleted.

3.14 Static: 1122 Dynamic: 1121, with a static scope, every time set_x(n) is called the
global variable x is changed, so the final print_x() will reflect that the second()
function changed x to 2. With the dynamic scope, after second() is called only the
local x is changed to 2, so the final print_x() call prints the global variable x which
is still 1.

