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3.7 (a) When he calls the reverse function, it creates a new list and the original
unreversed list remains loaded in memory, causing a leak.

(b)  The reverse function changes the pointer passed to it to point to the tail of
the newly reversed list, so when he tries delete_list(L), it deletes the
reversed list he just created. Then, after assigning L = T, L points to the
deallocated tail of the list he just deleted.

3.14 Static: 1122 Dynamic: 1121, with a static scope, every time set_x(n) is called the
global variable x is changed, so the final print_x() will reflect that the second()
function changed x to 2. With the dynamic scope, after second() is called only the
local x is changed to 2, so the final print_x() call prints the global variable x which
is still 1.



