
Uses of Threads

CS151
Chris Pollett

Nov. 30, 2005.

Outline

• Bounded Queues
• Producer Consumer
• Bounded Queues with Guards
• Liveness Failures
• Socket Basics

Bounded Queue
• The book gives several implementations for a bounded queue.
• A bounded queue supports the methods put(o) -- to put an object at the

end of the queue, get() -- to get the object at the start of the queue,
isEmpty(), isFull(), getCount().

• A bounded queue has some fixed size after which put(o) will fail.
• The first implementation called BoundedQueue in the book makes no

use of threads or synchronization and is quite straightforward.
• This would be a reasonable implementation in a non-threaded

environment.
• It is not thread safe. That is, if two threads had access to the same

BoundedQueue object q, one could do a put while a get was executing
and an inconsistent state might result.

Synchronized Bounded Queue

• To make the original BoundedQueue thread-safe
one can sub-class it to make a class
SyncBoundedQueue.

• For each method in the sub-class override it and
make it synchronized. For example,
synchronized public void put(Object e)
{

super.put(e);

}

Producer Consumer

• A typical use of a synchronized bounded
queue is in a producer consumer setting.

• Here we have two threads one a Producer of
items which are put into a given queue
another consumer of items from this queue.

Producer
public class Producer extends Thread
{

protected BoundedQueue queue;
protected int n;

public Producer(BoundedQueue queue, int n)
{

this.queue = queue;
this.n = n;

}
public void run()
{

for(int i=0; i <n; i++)
{

queue.put(new Integer(i));
System.out.println(“produce”+i);
try{sleep((int)(Math.random()*100);}catch(InterruptedException e){}}

}
}

}

Consumer
public class Consumer extends Thread
{

protected BoundedQueue queue;
protected int n;

public Consumer(BoundedQueue queue, int n)
{

this.queue = queue;
this.n = n;

}
public void run()
{

for(int i=0; i <n; i++)
{

Object obj = queue.get();
if(obj != null) System.out.println(“\tconsume”+obj);
try{sleep((int)(Math.random()*400);}catch(InterruptedException e){}}

}
}

}

Driver Code

SyncBoundedQueue queue = new
SyncBoundedQueue(5);

new Producer(queue, 15).start();
new Consumer(queue, 10).start();

/*the output roughly consumes one thing for each for
4 produced up until the end when everything is
consumed. */

Guards
• We would like the Producer and Consumer to cooperate.
• We would like that if the Producer attempts to put a new item into the

queue while it is already full, then it waits till the consumer consumes
one.

• Similarly, if there is nothing to consume, the Consumer should wait on
the Producer.

• A guard is a precondition for a certain action to complete successful.
• Guarded suspension is a requirement for threads to cooperate by:

– Testing the guard before a method is executed
– Executing only if the guard is true
– Otherwise, temporarily suspending execution until the

guard becomes true.

Queue with Guards

• We use wait() and notify() to implement
guards on our queue.

• We subclass SyncBoundedQueue to make
BoundedQueueWithGuard.

• We override put and get. For example:
synchronized void put(Object obj)
{

try{while(isFull()){wait();}}
catch(InterruptedException e){}
super.put(obj); notify();

}

synchronized Object get()
{

try{while(isEmpty()){wait();}}
catch(InterruptedException e){}
Object result=super.get(); notify();
return result;

}

Liveness Failures
• Liveness refers to the desirable condition that will come about during

the lifetime of a program.
• For instance, a certain task will complete, a thread should always

respond to user input, the status of the systems should be constantly
displayed and updated.

• Some things which might stop liveness are:
– contention -- thread never gets to run
– dormancy -- thread waits but is never notified
– deadlock -- thread1 waits on thread 2 and thread 2 waits on thread

1.
– premature termination -- a thread dies before it is supposed to

preventing other thread from executing.

Socket Basics

• We would like to be able to communicate over the
internet between two programs to do this we can
use sockets.

• There are two types of sockets: Server sockets and
client sockets.

• Example server socket code in Java looks like:
try{ ServerSocket s= new ServerSocket(port);
 while(true){Socket in= s.accept(); //spawn thread for this

connection}
}catch(IOException ie){}
//s.close() could be used to close a connection

Client Socket

• A client can connect to a server using:
Socket s= new Socket(host, port);

• One a connection is established a socket can read
or write from its stream by getting an input or
output stream:
InputStream in = s.getInputStream();
OutputStream out = s.getOutputStream();

