Uses of Threads

CS151
Chris Pollett
Nov. 30, 2005.



Outline

Bounded Queues

Producer Consumer

Bounded Queues with Guards
Liveness Failures

Socket Basics



Bounded Queue

The book gives several implementations for a bounded queue.

A bounded queue supports the methods put(o) -- to put an object at the
end of the queue, get() -- to get the object at the start of the queue,
isEmpty(), 1sFull(), getCount().

A bounded queue has some fixed size after which put(o) will fail.

The first implementation called BoundedQueue in the book makes no
use of threads or synchronization and is quite straightforward.

This would be a reasonable implementation in a non-threaded
environment.

It 1s not thread safe. That is, if two threads had access to the same
BoundedQueue object q, one could do a put while a get was executing
and an inconsistent state might result.



Synchronized Bounded Queue

* To make the original BoundedQueue thread-safe
one can sub-class it to make a class
SyncBoundedQueue.

* For each method in the sub-class override 1t and
make 1t synchronized. For example,
synchronized public void put(Object e)

{

super.put(e);

¥



Producer Consumer

e A typical use of a synchronized bounded
queue 1s 1in a producer consumer setting.

 Here we have two threads one a Producer of
items which are put into a given queue
another consumer of 1items from this queue.



Producer

public class Producer extends Thread

{

protected BoundedQueue queue;
protected int n;

public Producer(BoundedQueue queue, int n)

{
this.queue = queue;
this.n = n;
¥
public void run()
{
for(int 1=0; 1 <n; 1++)
{
queue.put(new Integer(i));
System.out.println(“produce”+1);
try{sleep((int)(Math.random()*100); }catch(InterruptedException e){ } }
¥
¥



Consumer

public class Consumer extends Thread

{

protected BoundedQueue queue;
protected int n;

public Consumer(BoundedQueue queue, int n)

{
this.queue = queue;
this.n = n;
b
public void run()
{
for(int 1=0; 1 <n; 1++)
{
Object obj = queue.get();
if(obj != null) System.out.println(‘“\tconsume”+obj);
try{sleep((int)(Math.random()*400); }catch(InterruptedException e){} }
b
b



Driver Code

SyncBoundedQueue queue = new
SyncBoundedQueue(d);

new Producer(queue, 15).start();
new Consumer(queue, 10).start();

/*the output roughly consumes one thing for each for
4 produced up until the end when everything 1s
consumed. */



Guards

We would like the Producer and Consumer to cooperate.

We would like that if the Producer attempts to put a new item into the
queue while it is already full, then it waits till the consumer consumes
one.

Similarly, if there is nothing to consume, the Consumer should wait on
the Producer.

A guard is a precondition for a certain action to complete successful.
Guarded suspension 1s a requirement for threads to cooperate by:

— Testing the guard before a method 1s executed
— Executing only if the guard is true

— Otherwise, temporarily suspending execution until the
guard becomes true.



Queue with Guards

* We use wait() and notify() to implement

guards on our queue.

 We subclass SyncBoundedQueue to make
BoundedQueueWithGuard.

* We override put and get. For example:
synchronized void put(Object obj)

{

try{while(isFull()){wait();} }
catch(InterruptedException e){}
super.put(obj); notify();

synchronized Object get()

{

try{while(isEmpty()){wait();} }
catch(InterruptedException e){}
Object result=super.get(); notify();
return result;



[1veness Failures

Liveness refers to the desirable condition that will come about during
the lifetime of a program.

For instance, a certain task will complete, a thread should always
respond to user input, the status of the systems should be constantly
displayed and updated.

Some things which might stop liveness are:
— contention -- thread never gets to run
— dormancy -- thread waits but is never notified

— deadlock -- thread1 waits on thread 2 and thread 2 waits on thread
1.

— premature termination -- a thread dies before it is supposed to
preventing other thread from executing.



Socket Basics

e We would like to be able to communicate over the
internet between two programs to do this we can
use sockets.

e There are two types of sockets: Server sockets and
client sockets.

* Example server socket code in Java looks like:

try{ ServerSocket s= new ServerSocket(port);

while(true){Socket in= s.accept(); //spawn thread for this
connection }

}catch(IOException 1e){ }
//s.close() could be used to close a connection



Client Socket

* A client can connect to a server using:
Socket s= new Socket(host, port);

 One a connection 1s established a socket can read
or write from its stream by getting an input or
output stream:
InputStream in = s.getInputStream();
OutputStream out = s.getOutputStream();



