Object-Oriented Modeling Using
UML

CS151
Chris Pollett
Aug. 29, 2005.

Outline

e Objects and Classes
 Modeling Relationships and Structures

Some Terms and Concepts

e Objects and classes are fundamental to OO
development.

* They both can be viewed from a real world
perspective and from within the OO-model.

Interpretation in Real World Representation in the Model

: An object represents anything in An object has an identity, a state
Object .
the real world that can be and a behavior.
distinctly identified
Class A class represents a set of A class characterizes the
objects with similar structure of states and behaviors

characteristics and behaviors. that are shared by all objects

More Terms and Concepts

An identity distinguishes one object from another.

An object (aka instance) consists of a set of fields
(aka attributes).

Each field has a type and a value. These give the
object a state

The behavior of on an object 1s defined by a set of
methods (aka member functions/operations) that
may operate on it.

State + Methods = Features

Still More Concepts

 Two objects are equal 1f their states are equal. Two objects
are 1dentical if they are the same object.

e Accessors are methods which do not modify the state of an
object.

* Mutators are methods which do modify the state of an
object.

* An object is mutable/immutable depending on whether its
state can be changed.

An example class:

class Point
{ int X, y; //fields
public void move(int dx, int dy) {/*implementation*/} // Method

¥

UML

Unified Modeling Language
Used during the design phase

We will use this language to model different
kinds of OO software project

Given a UML diagram we can then proceed
to actually implement it in some language
like Java

UML Notations for Classe

ClassName

omit-

field1
field2

fieldn

table

I

method1
method2

methodn

Fields can either be in the form:

[Visibility] [Type] Name[[Multiplicity]] [=
Value] EX.inta

or

[Visibility] Name [[Multiplicity]] : Type [=
Value] EX. a: int
Methods can either be in the form:

[Visibility] [Type] Name ([Param],...)
Ex.private int getDay (Date d)

or

[Visibility] Name ([Param],...) :Type
Ex. -getDate(d:Date) :int

Visibility

public
protected
package

private

More on Visibility

Java Syntax

public
protected

private

UML Syntax

Meaning

|

#

any class can see

same package and
subclasses can see

package can see

class only can see

UML Notation for Objects

éoijame::ClassName

7/

omit-
table

field1 = valuel

/ fieldn = valuen

For example,

p:Point

x=20
y=135

Message Passing

e Objects communicate with each other by means of
message passing.
* A message represents a command sent to an object

-- known as the recipient of the command -- to
perform an action (invoke one of 1ts methods).

* A message consists of a receiving object, a
method to invoke, and any arguments for this
method.

pl.move(10,20); /* recipient is pl, method is move,
arguments are (10,20) */

UML Notations of Packages

Classes are often grouped together into packages.

We’ll follow the convention that packages should
have all lower case names. Ex edu.sjsu.cs.pollett

Using internet domains (convention in reverse
order) ensures packages names will be unique.

UML looks like:

java.awt

java.lang

Point

event

OO Principles

Modularity -- a complex software system should
be decomposed into a set of highly cohesive but
loosely couple modules

Abstraction -- functionalities of a module should
be characterized in a succinct and precise
description known as a contractual interface.

Encapsulation - implementation of a module
should be separated from the contractual interface
and hidden from the module user

Polymorphism - different service providers can
implement the same contractual interface

Modeling Relationships

A UML class diagram consists of a set of nodes to
represents classes or interfaces and a set of links to
represent relationships between these classes.

* Possible relationships:
— Inheritance -- includes extension and implementation
— Association -- includes aggregation and composition

— Dependency

UML Notation for Inheritance

Superclass | [Superinterface Interface
Subclass Sublnterface | Implementation

Extension of a Extension of an Implementation
class interface of an interface

[.evels of Abstraction

e Abstraction can be ordered into more than
two levels.

* The higher the level the more general the
abstraction

Q™ @ >
»)

