
Object-Oriented Modeling Using
UML

CS151
Chris Pollett

Aug. 29, 2005.

Outline

• Objects and Classes
• Modeling Relationships and Structures

Some Terms and Concepts

• Objects and classes are fundamental to OO
development.

• They both can be viewed from a real world
perspective and from within the OO-model.
Interpretation in Real World Representation in the Model

Object

Class

An object represents anything in
the real world that can be
distinctly identified

A class represents a set of
objects with similar
characteristics and behaviors.

A class characterizes the
structure of states and behaviors
that are shared by all objects

An object has an identity, a state
and a behavior.

More Terms and Concepts

• An identity distinguishes one object from another.
• An object (aka instance) consists of a set of fields

(aka attributes).
• Each field has a type and a value. These give the

object a state
• The behavior of on an object is defined by a set of

methods (aka member functions/operations) that
may operate on it.

• State + Methods = Features

Still More Concepts
• Two objects are equal if their states are equal. Two objects

are identical if they are the same object.
• Accessors are methods which do not modify the state of an

object.
• Mutators are methods which do modify the state of an

object.
• An object is mutable/immutable depending on whether its

state can be changed.
An example class:

class Point
{ int x, y; //fields

public void move(int dx, int dy) {/*implementation*/} // Method
}

UML

• Unified Modeling Language
• Used during the design phase
• We will use this language to model different

kinds of OO software project
• Given a UML diagram we can then proceed

to actually implement it in some language
like Java

UML Notations for Classe

ClassName

field1
field2

…
fieldn

method1
method2

…
methodn

omit-
table

Fields can either be in the form:

[Visibility][Type]Name[[Multiplicity]] [=
Value] Ex. int a

or

[Visibility]Name [[Multiplicity]] : Type [=
Value] Ex. a: int

Methods can either be in the form:

[Visibility][Type] Name ([Param],…)

Ex.private int getDay (Date d)

or

[Visibility] Name ([Param],…) :Type

Ex. -getDate(d:Date) :int

More on Visibility
Visibility

public

protected

package

private

Java Syntax

public

protected

private

UML Syntax

+

#

~

-

Meaning

any class can see

same package and
subclasses can see

package can see

class only can see

UML Notation for Objects
objName:ClassName

field1 = value1
….

fieldn = valuen

p:Point

x=20
y=15

For example,

omit-
table

Message Passing

• Objects communicate with each other by means of
message passing.

• A message represents a command sent to an object
-- known as the recipient of the command -- to
perform an action (invoke one of its methods).

• A message consists of a receiving object, a
method to invoke, and any arguments for this
method.
p1.move(10,20); /* recipient is p1, method is move,

arguments are (10,20) */

UML Notations of Packages

• Classes are often grouped together into packages.
• We’ll follow the convention that packages should

have all lower case names. Ex edu.sjsu.cs.pollett
• Using internet domains (convention in reverse

order) ensures packages names will be unique.
• UML looks like:

java.awt

event
Point

java.lang

OO Principles

• Modularity -- a complex software system should
be decomposed into a set of highly cohesive but
loosely couple modules

• Abstraction -- functionalities of a module should
be characterized in a succinct and precise
description known as a contractual interface.

• Encapsulation - implementation of a module
should be separated from the contractual interface
and hidden from the module user

• Polymorphism - different service providers can
implement the same contractual interface

Modeling Relationships

• A UML class diagram consists of a set of nodes to
represents classes or interfaces and a set of links to
represent relationships between these classes.

• Possible relationships:
– Inheritance -- includes extension and implementation
– Association -- includes aggregation and composition
– Dependency

UML Notation for Inheritance
Superclass

Subclass

Extension of a
class

SuperInterface

SubInterface

Extension of an
interface

Interface

Implementation

Implementation
of an interface

Levels of Abstraction

• Abstraction can be ordered into more than
two levels.

• The higher the level the more general the
abstraction

A

B

C

D

