
Threads

CS151
Chris Pollett

Nov. 28, 2005.

Outline

• Thread Basics
• Thread Safety

Thread Basics I
• A thread is a single sequential flow of control within a program.
• Java supports multithreaded (aka concurrent) programming.
• That is, the run-time on top of the OS can make it appear as if several

threads are running at the time using various kind of time-sharing.
• Threads are useful for:

– reactive systems -- systems which continuously monitor arrays of
sensors and react to control systems according to sensor readings

– GUIs -- that would like to performs tasks but still be able to react
to user input.

– Servers -- which might need to handle several clients
simultaneously

– Computer with multiple processors.
• Threads are different from processes. Processes are managed by the

OS. They take longer to create and have more limited interprocess
communication.

Thread Basics II
• In Java, a thread is an instance of the class java.lang.Thread.
• In UML to denote an active object like a thread one makes the class

box bold face like below.
• The run() method of Thread is a hook into which you place your

concurrent content:
public class MyThread extends Thread
{

public void run()
{

//your code
}

}
• To start an instance of your class running one does: new

MyThread.start();

Thread

MyThread

Example Threaded Program
public class Counter1 extends Thread
{

protected int count, inc, delay;
public Counter1(int init, int inc, int delay)
{

this.count = init; this.inc = inc; this.delay = delay;
}
public void run()
{

while(true){
try
{
 System.out.print(count + “ “); count += inc; sleep(delay);
}
catch(InterruptedException e){ e.printStackTrace();}}

}
public static main (String[] args) {new Counter1(0,1,33).start(); new Counter1(0,-1,100).start();}

} //increasing counter should display about 3 times for every one time decreasing counter goes

Runnable Interface

• Sometimes one wants to use Threads but one wants to be able to
extend some other class other than Thread.

• To do this one can implement the Runnable interface. To implement
this interface one has to implement a public void run() method:
public class MyRunnable extends Something implements Runnable
{

public void run()
{ // do stuff
}

}
• To get a thread which uses this run method one can do:

new Thread(new MyRunnable()).start();

Controlling Threads

• The following chart illustrates the states that a thread can
be in as well as the transitions between them is illustrated
by the following diagram:

New

Dead

Alive

Runnable

Not Interrupted

Interrupted

Blocked

Wait to be notified

Wait for target to finish

Sleeping

start()

yield()

interrupt()

run()
returns

interrupt() throws
InterruptedException()

Time out
sleep()

TargetFinish()
join()

notify() | notifyAll()
wait()

Methods of java.lang.Thread

• start() -- makes the thread transition from the New state (after creation)
to the alive state

• sleep(t) -- from the Runnable state makes a thread enter the blocked to
for t milliseconds. After the time out period is over it re-enters the
Runnable state

• join() -- from the Runnable state if join() of another Thread is called, it
causes the thread which made the call to go into the Blocked state and
wait for other thread to finish, at which point it re-enter the Runnable
state.

• yield() -- from the Runnable state leaves the thread in the Runnable
state but lets another thread in the Runnable state have a chance to run

• interrupt() -- if the thread is in the Runnable state, the interupted flag is
set. If the thread is in the Blocked state, it is awakened and enters the
Runnable state and an interuppted exception is thrown.

• isAlive() -- returns true if the thread is in the Alive state
• isInterrupted() - returns true if the interrupted flag is set.

Thread Priority and Scheduling

• The JVM implements a rather simple scheduling strategy to determine
which of the Runnable threads should be running.

• Each thread has an integer priority attribute which is assigned when
the thread is created. By default, this priority is the priority of the
thread that created the new thread.

• The JVM has a queue from each priority and selects a Runnable thread
from the queue with the highest priority (how the thread is selected
from the queue is arbitrary)

• Threads of higher priority when the become Runnable will preempt a
thread of lower priority. That is, if a thread of higher priority becomes
Runnable, the current thread will stop running so it can run. the current
thread though stays Runnable.

Changing whose Running

• The thread that is currently running relinquishes control
when one of the following occurs:
– Yielding -- its yield() method is invoked
– Blocking -- sleep(), join(), or wait()
– Preempting -- when a thread with higher priority becomes

available
– Switching -- when its time slice expires (some OSs don’t support

time-slicing).

Thread Safety

• Safety conditions are conditions that should hold throughout the
lifetime of the program and ensure that nothing bad should happen.

• An important safety condition is the consistency of object states.
• For example, if you have two ATM transactions going on at the same

time on the same account you shouldn’t be able to use this to make
money that didn’t exist.

• This might be possible if they both check the current balance before
either of them withdraws money. This is an example of a race
condition.

• A thread is said to be thread-safe if its ensures the consistency of the
states of the objects and the results of method invocations.

• To maintain the consistency of states one can try to synchronize who
gets access to certain critical region of a code. Critical regions are
regions of code only one thread should be allowed to execute at a time.

Synchronization

• In Java synchronization can be applied to a block of code or to a method:
class MyClass
{

synchronized void aMethod() {/* do something */}
/*

This is equivalent to
aMethod(){ synchronized(this){//do something
}}

*/
}

or for a block

synchronized(ref)
{
 // do something
}

• Basically, each object has a lock and to run a synchronized method the thread must first
get the lock. Locks are released when the thread lives the critical region. The lock can
also be released using wait().

