
 Exceptions

CS151
Chris Pollett

Sept. 26, 2005.

Outline

• What is an exception
• Sources of Exceptions
• Hierarchy of Exceptions
• Exception Syntax

What is an Exception?

• Exceptions are unexpected conditions in
programs.

• Java provides a mechanism to facilitate
recovery from such unexpected collisions.

• This mechanism disrupts the normal flow of
execution and goes to a block of code
specifically for handling the exception.

Sources of Exceptions

• When the normal flow of execution is
interrupted because of an exception, we say
an exception has been thrown.

• Exceptions originate from two sources:
– At run-time. This might happen for instance if

one tries to dereference a null pointer.
– In a Java program, when an unexpected

condition occurs, an exception can be explicitly
thrown with the throw statement.

Hierarchy of Exceptions
• Exceptions are modeled as objects of different exception classes.
• All error and exceptions are subclasses of Throwable.
• Error is a subclass of Throwable for throwing serious of fatal

problems with a program. Errors are thrown by the JVM and are not
typically handled by regular programs. Some subclasses include
AssertionError and OutOfMemoryError.

• Exception is a subclass of Throwable for problems which might be
thrown by a typical program. All-user defined exceptions should be a
subclass of Exception. Some notable subclasses are IOException,
CloneNotSupportedException, and InterruptedException

• RuntimeException is a subclass of Exception which are cause by
illegal operation and are thrown by the JVM. Some examples are:
ArithmeticException, ClassCastException,
IndexOutOfBoundsException, IllegalArgumentException,
NullPointerException, and NumberFormatException.

Exception Syntax
• To throw an exception the command is:

throw ExceptionName;
For example: throw new MyException();

• Any exceptions not caught within a method, but which might be
thrown by that method must be listed in the method declaration. For
example,
public void myMethod() throws IOException;

• To handle exception use try-catch block:
try{/* code which might cause exception*/}
catch(MyException_1 e1){/* what to do for this type of exception*/}

….
catch(MyException_n en){/* what to do for this type of exception*/}
finally{/*what to do in all cases including no exception */}

• One common thing to do when an exception occurs to to print the list
of stack calls: e.printStackTrace();

Example
public class PurchaseOrder
{

public double calculateItemTotal(double unitPrice, int quantity)
{

if(quantity < 0) throw new IllegalArgumentException(“negative
quantity”);//exception case

//normal case
return unitPrice*quantity;

}
// rest of class

}
// Code which might use above:
PurchaseOrder anOrder;
try{double total= anOrder.calculateItemTotal(…);
} catch(IllegalArgumentException e){/* handle exception*/}

