More on Design by Abstraction

CS151
Chris Pollett
Oct. 24, 2005.



Outline

 Animation Sort Algorithm Case study

e Applications Frameworks



Animation Sort Algorithm

Book gives a sequence of programs which
illustrate design by abstraction.

The goal was to produce a program which could
be used to animate the sorting of a list in an
applet.

Initially, everything is done in one class abstract
AlgorithmAnimator which 1s subclassed from
DB AnimationApplet.

This class defines three methods:
— abstract algorithm() - which controls how to sort,
— run() - which is called from a template to get continue sorting
— pause() - called inside algorithm to allow for an update in painting

From DB AninmationApplet one still has paintFrame 1s
also abstract.



Class Sort

e This class implements AlgorithmAnimator and
has the following methods:

scramble() - creates an array of integers of size based on
the display area. Then randomly swaps entries.

paintFrame()
bubbleSort()
quickSort()

initAnimator() -- uses applet arg parameter to say which
sort algortthm to use

algorithm()
swap()



Separating algorithm()

The sorting algorithm is only loosely related to the actual
animation process.

So it 1s a more flexible design if we separate the sort
algorithm out of the applet into its our class.

The 1dea 1s that if a class contains components that address
different concerns, then these different concerns are
candidates to be split into their own classes.

So the second version of the sort animator, Sort2, still
extends AlgorithmAnimator, but has on it a SortAlgorithm
object whose sort() method is invoked to do the sorting.

Different subclasses of SortAlgorithm are created for
different sort algorithms like bubblesort etc.

The parameter tag of the applet now used to say which of
these SortAlgorithms to instantiate



Improving initAnimator

e Rather than have the job of figuring out which
SortAlgorithm to call inside initAnimator, it 1s
better to split this out into a separate factory class,
AlgorithmFactory.

e AlgorithmFactory has a method
makeSortAlgorithm(String algName);

 The advantage of this i1s that now any time a new
SortAlgorithm 1s created there 1s one place where
we can create new objects of type sort algorithm
based on a string name.



Factory Pattern

e Category: creational

e Intent: To define an interface for creating
objects but let subclasses decide which class
to instantiate and how

* Applicability: The factory design pattern
should be used when a system should be
independent of how 1ts products are created.

AbstractFactory

makePgoduct() Product
ConcreteFactory $
makeProduct() » ConcreteProduct




Separating Display Strategies

The way we actually do the display step can also
be separated out of the Sort2 AlgorithmAnimator.

To do this we can subclass Sort2 to make Sort3
which has a protected SortDisplay object which 1s
called when paintFrame is executed.

A SortDisplay 1s just an interface with a method
display to do the drawing.

The book give four implementations of this
HSortDisplay, VSortDisplay, etc,

One can also make a factory for SortDisplay’s



Application Frameworks

* An object-oriented application framework or just
framework 1s a set of co-operating classes that
represent reusable designs of software systems in
a particular application domain.

* For example, the Java Collection Framework, the
AWT and Swing, or the Input/Output Framework.

e Some characteristics of frameworks are:
— Extensibility
— Inversion of control
— Design Patterns as Building blocks.



Design Requirements for
Frameworks

Completeness
Adaptability
Efficiency
Safety
Simplicity
Extensibility



The Collections Framework

* A collection 1s an object that contains other
objects.

e The Collections framework has abstract
collections for four major categories of
collections:

— Bags: (aka multisets) unordered collections which
allow repeats. Ex {1, 2, 3,2, 4}
— Sets: unordered collections no repeats. Ex {1, 2, 3, 4}

— Lists: ordered bags (1, 2, 3, 2, 4) would be different
from (1, 2, 2, 3, 4)

— Map: a set of key, value pairs. {(k,, v,), (k,, v,), ...}
such that each k;1s distinct.



