
More on Design by Abstraction

CS151
Chris Pollett

Oct. 24, 2005.

Outline

• Animation Sort Algorithm Case study
• Applications Frameworks

Animation Sort Algorithm
• Book gives a sequence of programs which

illustrate design by abstraction.
• The goal was to produce a program which could

be used to animate the sorting of a list in an
applet.

• Initially, everything is done in one class abstract
AlgorithmAnimator which is subclassed from
DBAnimationApplet.

• This class defines three methods:
– abstract algorithm() - which controls how to sort,
– run() - which is called from a template to get continue sorting
– pause() - called inside algorithm to allow for an update in painting

• From DBAninmationApplet one still has paintFrame is
also abstract.

Class Sort

• This class implements AlgorithmAnimator and
has the following methods:
scramble() - creates an array of integers of size based on

the display area. Then randomly swaps entries.
paintFrame()
bubbleSort()
quickSort()
initAnimator() -- uses applet arg parameter to say which

sort algortihm to use
algorithm()
swap()

Separating algorithm()
• The sorting algorithm is only loosely related to the actual

animation process.
• So it is a more flexible design if we separate the sort

algorithm out of the applet into its our class.
• The idea is that if a class contains components that address

different concerns, then these different concerns are
candidates to be split into their own classes.

• So the second version of the sort animator, Sort2, still
extends AlgorithmAnimator, but has on it a SortAlgorithm
object whose sort() method is invoked to do the sorting.

• Different subclasses of SortAlgorithm are created for
different sort algorithms like bubblesort etc.

• The parameter tag of the applet now used to say which of
these SortAlgorithms to instantiate

Improving initAnimator

• Rather than have the job of figuring out which
SortAlgorithm to call inside initAnimator, it is
better to split this out into a separate factory class,
AlgorithmFactory.

• AlgorithmFactory has a method
makeSortAlgorithm(String algName);

• The advantage of this is that now any time a new
SortAlgorithm is created there is one place where
we can create new objects of type sort algorithm
based on a string name.

Factory Pattern
• Category: creational
• Intent: To define an interface for creating

objects but let subclasses decide which class
to instantiate and how

• Applicability: The factory design pattern
should be used when a system should be
independent of how its products are created.

AbstractFactory

makeProduct()

ConcreteFactory

makeProduct() ConcreteProduct

Product

Separating Display Strategies

• The way we actually do the display step can also
be separated out of the Sort2 AlgorithmAnimator.

• To do this we can subclass Sort2 to make Sort3
which has a protected SortDisplay object which is
called when paintFrame is executed.

• A SortDisplay is just an interface with a method
display to do the drawing.

• The book give four implementations of this
HSortDisplay, VSortDisplay, etc,

• One can also make a factory for SortDisplay’s

Application Frameworks

• An object-oriented application framework or just
framework is a set of co-operating classes that
represent reusable designs of software systems in
a particular application domain.

• For example, the Java Collection Framework, the
AWT and Swing, or the Input/Output Framework.

• Some characteristics of frameworks are:
– Extensibility
– Inversion of control
– Design Patterns as Building blocks.

Design Requirements for
Frameworks

• Completeness
• Adaptability
• Efficiency
• Safety
• Simplicity
• Extensibility

The Collections Framework

• A collection is an object that contains other
objects.

• The Collections framework has abstract
collections for four major categories of
collections:
– Bags: (aka multisets) unordered collections which

allow repeats. Ex {1, 2, 3,2, 4}
– Sets: unordered collections no repeats. Ex {1, 2, 3, 4}
– Lists: ordered bags (1, 2, 3, 2, 4) would be different

from (1, 2, 2, 3, 4)
– Map: a set of key, value pairs. {(k1, v1), (k2, v2), …}

such that each ki is distinct.

