[.ast of Maze Game

CS151
Chris Pollett
Nov. 21, 2005.



Outline

Builder

Command Pattern
Adapter Pattern

Model View Controller



Builder Design Pattern

e Last day we talked about how to do themes
In our maze game.

* We had two methods createMaze and
createLargeMaze which were quite long and

were repetitive.

 We can use a Builder pattern to reduce the

amount of code duplication
Director Builder
Prod buildProd() buildPart()
AN AN
Prod CreteBuilderA CreteBuilderB‘




Builder in Maze Game

* In the maze game the Director of the previous
slide 1s given by MazeGameBuilder and Prod 1s
the Maze.

e The class MazeBuilder corresponds to Builder and
it 1S an interface with methods newMaze(),
getMaze(), buildRoom(int roomNumber) and
buildDoor(int roomNumber, roomNumber?2, dir,
open).

e This 1s subclassed into SimpleMazeBuilder and
FactoryMazeBuilder.



Intro to the Command Pattern

* Beyond the layout of the maze we also want
to support different player actions.

* For instance, move left, right, up, and down.
Also, we might want to support undoing
moves.

* One object-oriented way of supporting
undoing of actions 1s to use the command
pattern.



The Command Pattern

create

Client Invoker ©—Command
execute()
receiver ZT
Rece: ConcreteCommand
ecelver

recelver.action()




More Command Pattern

Command -- 1s the interface from the book Command (has
execute) or its its subinterface UndoableCommand (also
has undo) -- the latter defines the interface to perform an
undo action

Receiver -- 1n this case Maze -- knows how to perform
actions

ConcreteCommand -- MazeMoveCommand -- implements
Command interface so has an execute method, delegates
execution to the receiver.

Client -- Maze.MazeKeyListener -- creates concrete
commands and binds the commands to their receivers.

Invoker (Maze) which asks the command to carry out their
actions.



Intro to the Adapter Pattern

e Suppose we have a nice reusable component
with interface and we have a client which
could potentially make use of this
component 1f the interface corresponded to
one that the client expected.

e Then we’d be 1n a situation where we could
use the Adapter pattern...



The Adapter Pattern

e There are two forms of the adapter pattern:

A class form and an object form.
This is the.
Client Target Adaptee « gﬁzsozjzif“
version has
d 0 T ClS k () p erfo ]/'m Ta S k() ﬁdapterAg/hifh
A and delogates
E / the meth%)dt
call.
Adapter
SISl serformTask()




Example Adapter Pattern from

book

Target -- TableEntry in a table of students
program from book. Has interface

getCol
getCol

'umnCount, getColumnName,
lumnTip, getColumnClass,

getCol
Client

'umnComparator, getColumnWidth
-- Table which makes use of TableEntry’s

Adaptee -- Student a class with student info to be
reused.

Adapter -- StudentEntry, StudentEntry which
adapts the interface of Student so that it can be
used as a TableEntry



Model View Controller Pattern

-
Model

* Encapsulates application state

* Hesponds to state queries

* Exposes application
functionality

* Nofifies views of changes

. .

View View Selection Controller

* Renders the models * Defines application behaviar
» Requests updates from models * Maps user actions to
» Sends user gesturesfocontroller "4 § § 1 1 | model updates

* Allows controller to select view User Gestures * Selects view for [ESEULSE
* One for each functionality

Events




