
Last of Maze Game

CS151
Chris Pollett

Nov. 21, 2005.

Outline

• Builder
• Command Pattern
• Adapter Pattern
• Model View Controller

Builder Design Pattern

• Last day we talked about how to do themes
in our maze game.

• We had two methods createMaze and
createLargeMaze which were quite long and
were repetitive.

• We can use a Builder pattern to reduce the
amount of code duplication

Director
Prod buildProd()

Prod

Builder
buildPart()

CreteBuilderA CreteBuilderB

Builder in Maze Game

• In the maze game the Director of the previous
slide is given by MazeGameBuilder and Prod is
the Maze.

• The class MazeBuilder corresponds to Builder and
it is an interface with methods newMaze(),
getMaze(), buildRoom(int roomNumber) and
buildDoor(int roomNumber, roomNumber2, dir,
open).

• This is subclassed into SimpleMazeBuilder and
FactoryMazeBuilder.

Intro to the Command Pattern

• Beyond the layout of the maze we also want
to support different player actions.

• For instance, move left, right, up, and down.
Also, we might want to support undoing
moves.

• One object-oriented way of supporting
undoing of actions is to use the command
pattern.

 The Command Pattern
Client Invoker Command

execute()

ConcreteCommand

execute()

receiver.action()

Receiver

action()

receiver

create

More Command Pattern
• Command -- is the interface from the book Command (has

execute) or its its subinterface UndoableCommand (also
has undo) -- the latter defines the interface to perform an
undo action

• Receiver -- in this case Maze -- knows how to perform
actions

• ConcreteCommand -- MazeMoveCommand -- implements
Command interface so has an execute method, delegates
execution to the receiver.

• Client -- Maze.MazeKeyListener -- creates concrete
commands and binds the commands to their receivers.

• Invoker (Maze) which asks the command to carry out their
actions.

Intro to the Adapter Pattern

• Suppose we have a nice reusable component
with interface and we have a client which
could potentially make use of this
component if the interface corresponded to
one that the client expected.

• Then we’d be in a situation where we could
use the Adapter pattern…

The Adapter Pattern

• There are two forms of the adapter pattern:
A class form and an object form.

Client Target

doTask()

Adapter

doTask()

Adaptee

performTask()

performTask()

This is the
class version.
The object
version has
Adapter which
has an Adaptee
and delegates
the method
call.

Example Adapter Pattern from
book

• Target -- TableEntry in a table of students
program from book. Has interface
getColumnCount, getColumnName,
getColumnTip, getColumnClass,
getColumnComparator, getColumnWidth

• Client -- Table which makes use of TableEntry’s
• Adaptee -- Student a class with student info to be

reused.
• Adapter -- StudentEntry, StudentEntry which

adapts the interface of Student so that it can be
used as a TableEntry

Model View Controller Pattern

