Class, Strings, Packages

CS151
Chris Pollett
Sept. 21, 2005.



Outline

Interfaces and Abstract Classes
Strings

Wrapper Classes

Packages



Interfaces

* Interfaces are a special kind of class that only
declares what features are to be supported by
implementers.

[ClassModifiers]interface InterfaceName [extends
Interfacel, Interface2, ...]{

InterfaceMemberDeclarations

¥

For example,

public interface Runnable {
public void run();

¥

Classes can implement an interface by overriding the
methods declared in the interface.



Abstract Classes

e (lasses can also declare methods and defer
implementation to a subclass using the keyword
abstract:

abstract class MyClass
1

abstract void myMethod();

¥

o An abstract class 1s a class with at least one
abstract method.



Strings 1n Java

e A string 1s a sequence of characters. This notion in
Java 1s encapsulated in the String class and
StringButfer classes.

e String are used for immutable sequences of
characters; StringBuffers are used for mutable
sequences.

e Strings are different from most usual classes in
Java in that:

— They can be created using String literals. String
a=‘“hello”’;

— Operators + and += can be applied to them.



String Comparison

s1==s2 checks equality of references for String’s, not if
the two strings have the same characters.

sl.equals(s2) checks the latter.

Other useful methods are compareTo and
equalsIgnoreCase.

The String class supports a canonical representation of
Strings.

That 1s, it maintains an internal pool of unique String
objects. To get this internal object, can do things like:
String s2 = sl.intern();

Comparing interned objects by reference always yields the
same result as comparing by equality.



toString()

* Defining a toString() method for a class allows
one to define a string representation of instances
of a class.

e For example, for the Point class we might write:
public String toString(){return “(”’+x+ “,
99+y+66)99;}

* Once we’ve done this, the following would be
legal:

Point p = new Point(10.0, 20.0);
System.out.println(“p” + p);



Converting between Character
Arrays and Strings.

e Unlike C/C++, strings 1n Java are not character
arrays like charf].

* However, Java does support converting in and out
of such arrays:
char data[] = {‘f’, ‘0’, ‘0’ };
String str = new String(data);
//Same as String str = “f00”;
also can do
String str="bar”’;
char data[] = str.toCharArray();



File 1/0O

Java supports various kinds of Streams, Readers and Writers for doing I/O.

For example, System.in is an InputStream object and System.out and
System.err are PrintStream objects.

One can also use readers to read from/write to a file:
try
{
BufferedReader in=new BufferedReader(new
FileReader(“infile.txt”);
PrintWriter out=new PrintWriter(new
BufferedWriter(
new FileWriter(“outfile.txt™)));
String line = in.readLine();
out.println(line);
out.flush(); out.close();

}
catch(IOException e){}



Working with Strings

Often we need to split strings into smaller pieces known as
tokens, that are separated by delimiters. For example:
String a="“Michael:Owens: 123 OakStreet:Chicago:IL:606067;

We could use the methods indexOf() and substring() to do
this.
A better way 1s to use split() or to use a StringTokenizer.

StringTokenizer st = new StringTokenizer(a, “:”);
while(st.hasMoreTokens()){
System.out.println(st.nextToken());



Wrapper Classes

For each primitive type in Java there is a class that allows one to wrap
the primitive value in an object.

For example, boolean--> Boolean, byte --> Byte, char-->Character,
etc.
Can create objects/get out using in a natural way:

Integer obj = new Integer(5);

int 1 = obj.intValue();

/[for other types would use typeValue() to unbox.

//can also use valueOf to parse String version of type:
Double.valueOf(“1E3”).doubleValue();

Java 5 supports autoboxing/unboxing of primitive types used in
collection objects:

List myNums = new ArrayList();

myNums.add(55); // same as myNums.add(new Integer(55));



Packages

A Java program consists of one or many classes.

Java has two means for organizing large amounts of classes:

— Files -- whichcan contain one public class and maybe several helper
classes which are non public

— Packages -- which comprise related classes, interfaces, or other packages.

To specify a class belongs to a package we use the command:
package Name;
At the start of the file the class belongs to.

A class can then be specified in two ways:
— With a fully qualified name
geometry.Point p = new geometry.Point()
— By importing the class and using a simple class name:
import geometry.Point;
// now can use Point.
//can also do import geometry.*;



More Packages

The usual naming convention is to use reverse of internet domain
names for packages: edu.sjsu.cs

Packages should contain: closely related classes and classes that
change together when a change is made.

Packages should not contain: classes that are not reused together.

When compiling the files for the package packagel.package2, one
would move to the directory, such that there are the .java files are in
the packagel/package?2 subdirectory. Then we’d type:

javac packagel/package2/MyClass.java

If we want to specify a different target directory we could use the -d
option for javac.
To run our class we then type:

java packagel.package2.Myclass.java

In general, to make our package runnable from another directory, we’d
have to add the path to our package in the CLASSPATH environment
variable.



