
 Class, Strings, Packages

CS151
Chris Pollett

Sept. 21, 2005.

Outline

• Interfaces and Abstract Classes
• Strings
• Wrapper Classes
• Packages

Interfaces

• Interfaces are a special kind of class that only
declares what features are to be supported by
implementers.
[ClassModifiers]interface InterfaceName [extends

Interface1, Interface2, …]{
InterfaceMemberDeclarations

}
For example,
public interface Runnable {

public void run();
}
Classes can implement an interface by overriding the

methods declared in the interface.

 Abstract Classes

• Classes can also declare methods and defer
implementation to a subclass using the keyword
abstract:
abstract class MyClass
{

abstract void myMethod();

}
• An abstract class is a class with at least one

abstract method.

Strings in Java

• A string is a sequence of characters. This notion in
Java is encapsulated in the String class and
StringBuffer classes.

• String are used for immutable sequences of
characters; StringBuffers are used for mutable
sequences.

• Strings are different from most usual classes in
Java in that:
– They can be created using String literals. String

a=“hello”;
– Operators + and += can be applied to them.

String Comparison
• s1== s2 checks equality of references for String’s, not if

the two strings have the same characters.
• s1.equals(s2) checks the latter.
• Other useful methods are compareTo and

equalsIgnoreCase.
• The String class supports a canonical representation of

Strings.
• That is, it maintains an internal pool of unique String

objects. To get this internal object, can do things like:
String s2 = s1.intern();

• Comparing interned objects by reference always yields the
same result as comparing by equality.

toString()

• Defining a toString() method for a class allows
one to define a string representation of instances
of a class.

• For example, for the Point class we might write:
public String toString(){return “(”+x+ “,
”+y+“)”;}

• Once we’ve done this, the following would be
legal:
Point p = new Point(10.0, 20.0);

 System.out.println(“p” + p);

Converting between Character
Arrays and Strings.

• Unlike C/C++, strings in Java are not character
arrays like char[].

• However, Java does support converting in and out
of such arrays:
char data[] = {‘f’, ‘o’, ‘o’};
String str = new String(data);
//Same as String str = “foo”;
also can do
String str=“bar”;
char data[] = str.toCharArray();

File I/O
• Java supports various kinds of Streams, Readers and Writers for doing I/O.
• For example, System.in is an InputStream object and System.out and

System.err are PrintStream objects.
• One can also use readers to read from/write to a file:

try
{

BufferedReader in=new BufferedReader(new
FileReader(“infile.txt”);

PrintWriter out=new PrintWriter(new
BufferedWriter(

new FileWriter(“outfile.txt”)));
String line = in.readLine();
out.println(line);
out.flush(); out.close();

}
catch(IOException e){}

Working with Strings

• Often we need to split strings into smaller pieces known as
tokens, that are separated by delimiters. For example:
String a=“Michael:Owens:123 OakStreet:Chicago:IL:60606”;

• We could use the methods indexOf() and substring() to do
this.

• A better way is to use split() or to use a StringTokenizer.
StringTokenizer st = new StringTokenizer(a, “:”);
while(st.hasMoreTokens()){

System.out.println(st.nextToken());
}

Wrapper Classes

• For each primitive type in Java there is a class that allows one to wrap
the primitive value in an object.

• For example, boolean--> Boolean, byte --> Byte, char-->Character,
etc.

• Can create objects/get out using in a natural way:
Integer obj = new Integer(5);
int i = obj.intValue();
//for other types would use typeValue() to unbox.
//can also use valueOf to parse String version of type:
Double.valueOf(“1E3”).doubleValue();

• Java 5 supports autoboxing/unboxing of primitive types used in
collection objects:
List myNums = new ArrayList();
myNums.add(55); // same as myNums.add(new Integer(55));

Packages

• A Java program consists of one or many classes.
• Java has two means for organizing large amounts of classes:

– Files -- whichcan contain one public class and maybe several helper
classes which are non public

– Packages -- which comprise related classes, interfaces, or other packages.
• To specify a class belongs to a package we use the command:

package Name;
At the start of the file the class belongs to.

• A class can then be specified in two ways:
– With a fully qualified name

geometry.Point p = new geometry.Point()
– By importing the class and using a simple class name:

import geometry.Point;
// now can use Point.
//can also do import geometry.*;

More Packages

• The usual naming convention is to use reverse of internet domain
names for packages: edu.sjsu.cs

• Packages should contain: closely related classes and classes that
change together when a change is made.

• Packages should not contain: classes that are not reused together.
• When compiling the files for the package package1.package2, one

would move to the directory, such that there are the .java files are in
the package1/package2 subdirectory. Then we’d type:
javac package1/package2/MyClass.java

• If we want to specify a different target directory we could use the -d
option for javac.

• To run our class we then type:
java package1.package2.Myclass.java

• In general, to make our package runnable from another directory, we’d
have to add the path to our package in the CLASSPATH environment
variable.

