
More on Design by Abstraction

CS151
Chris Pollett

Oct. 19, 2005.



Outline

• Generalizing
• Design Pattern -- Strategy
• Abstract Coupling
• Design Pattern -- Iterator
• Case Study



Generalizing

• Generalizing is a process that takes a
solution to a specific problem and
restructures it so that it solves not only the
original problem but a category of other
problems as well.



Plotter Example

• The book gives a generic function plotter program to
illustrates the generalization technique as well as the
Strategy Pattern.

• The original function plotter class shown is Plotter. Plotter
uses a template pattern with hook function func() to say
what to plot. PlotSine is a concrete subclass of Plotter

• Plotter is generalized to MultiPlotter which can plot
multiple single variable functions overlaid on the same 2D-
space.

• The problem that needed to be solved was how to separate
the functions to be plotted from the plotter.

Plotter

plotFunction()
func()

PlotSine

func()

return sin(x);



One way to solve Plotter Problem
• Could add more hook methods to the method:

protected void plotFunction(Graphics g)
{

for(int px=0; px.dim.width; px++)
{

try{ double x =
(double)(px-xorigin)/(double)xratio;

double y =func1(x); //get ready to plot first function
int py = yorigin - (int)(y*yratio);
g.fillOval(px-1, py-1, 3, 3); //plot first function
y =func2(x); //get ready to plot second function
int py = yorigin - (int)(y*yratio);
g.fillOval(px-1, py-1, 3, 3); //plot second function

//…
}catch(Exception e){}

}
}

• This would only allow one to plot a fixed number of functions.



More on Plotter Problem

• Instead, we create an interface Function which has a
method apply(double x) to compute f(x)=y.

• This interface can be implemented to return sin x, cosine
x,etc.

• Then MultiPlotter is made an abstract class with an
abstract initMultiPlotter() method.

• Implementations of this spell out which functions we will
plot.

• MultiPlotter has a LinkedList of Function objects, and an
addFunction method to add to this list (for instance in init).

• To do plotFunction we now cycle over the functions in this
list plotting each one in turn.



Design Pattern -- Strategy

• MultiPlotter illustrates the Strategy Pattern
(another example is LayoutManager in the AWT)

Context

contextMethod()

Strategy

algorithm()

CStrategyA

algorithm()

CStrategyB

algorithm()

In MultiPlotter scenario:

• Strategy is Function

•CStrategy’s would be classed
like Sine or Cosine

•Context would be
MultiPlotter which maintains
a reference to one or more
Strategy objects (in this case
Function objects).

•contextMethod in this case
would be plotFunction which
cycles over the Function
objects and plots them in turn.



Abstract Coupling

• Abstract Coupling refers to how clients
couple with service providers: A client
accesses a service provider through an
interface without knowing which concrete
implementation of the interface is being
used.

Customer Protocol

ProviderA

ProviderB

ProviderC



Design Pattern -- Iterator
• An example of abstract coupling is the use of

iterators.
• The idea is we have many different kinds of

container class and we’d like to be able to cycle
over the elements from any different one.

• We create an interface Iterator and have each
container class have a method iterator() which
returns an object of this type.

• An Iterator supports the methods reset(), next(),
and hasNext() to allow us to cycle over the
element of the class.

• Enumeration’s in Java are an older related idea
which support just hasMoreElements and
nextElement();


