
 Java Class Definitions

CS151
Chris Pollett

Sept. 19, 2005.

Outline

• Creating and Initializing Objects
• Access Fields and Methods
• Method Invocation and Parameter Passing
• Static Fields and Methods
• Constants and Enumerated Types
• Singletons

Creating and Initializing Objects

• There are four different ways of initializing
a field of a class:
– By an explicit initializer:

public double x=0.0, y= 0.0;
– Default initial values - if don’t initialize get

value as described earlier
– Constructor
– Initialization Blocks

Will describe these
two on next slides

Constructors
• Are special methods with the same name as the class.
• Their return type can be omitted.

class Point
{
 public double x,y;
 public Point() { x=0.0; y=0.0;}/* no-arg constructor */
 public Point(double init_x, double init_y){x=init_x; y=init_y;}

/* other constructor */
public void move(double dx, double dy){x+=dx; y+=dy;}
}

• To create instances of a class one uses the new operator: Point p1 = new
Point(); Point p2=new Point(5.0, 3.0);

• If no constructor is given a default empty-bodied one is provided implicitly.
• However, is any constructor is given the default one vanishes.

Initialization Blocks
• You can use a statement block within the class declaration to initialize

fields:
class MyClass
{

public int myArray[]= new int[20];
{

for(int i=0; i< 20; i++)
{

myArray[i] = i;
}

}
}

• Initialization blocks are executed before any constructor is executed.
• They can be used for code fragments common to all the constructors.

Accessing Fields and Methods

• After an instance has been created fields
and methods can be accessed as follows:
object.method(Parameters)
object.field

• For example,
Point p1=new Point();
double x =p1.x; //access field
p1.move(5.0,2.0); // access method

Method Invocation
• The body of a method is simply a block statement.
• If the return type of a method is void the return statement in the body

may not return values and you don’t always need a return statement
• If the return type is not void all path-ways through the method body

must return a value of the return type. So for instance the following
will give a compile error:
public double product(double x, double y)
{ if (y > 0) return x*y;}

• To fix this need to add a return line for the case when y<=0
• Note one also has to be careful about: double foo(){ double a; return

a;} since local variables declared in method bodies are not
automatically initialized to their default values.

Parameter Passing
• In Java all parameter methods are passed by value. So modifications to

parameters of primitive types inside a method do not affect calling variable
values.

• For example:
class C{void inc(int i){i++;}
C c =new C();
int k =1;
c.inc(k); //k is unchanged

• For parameters of reference type, state of an object can be affected inside a
method:
class D{void pointInc(Point p){p.x++; p.y++;}
D d =new D();
Point p = new Point(10.0, 5.0);
d.pointInc(p); // p is now (11.0 ,6.0)

More on Parameter Passing

• To achieve a similar result for primitive types as we did for
reference types, one could use a wrapper class:
class IntRef {public int val; public IntRef(int i){val=i;}}
class E {void inc(IntRef i){i.val++;}}
E e = new E();
IntRef k = new IntRef(1);
e.inc(k); // now k.val is 2

• These kind of in-out parameters can be useful if we want
to pass and return multiple values from a method.

Class Static Fields and Methods
• By default the fields declared in a class are called instance fields.
• This means each instance of the class gets a separate copy of these

fields. Modification of field values in one instance will not affect those
values of other instance

• In contrast class fields are shared by all instances of a class.
• There are also instance methods and class methods.
• The keyword static is used to declare class fields and class methods.
• Class fields are initialized before any instance of the class is created.

They live until the program ends.
• One can use default values, explicit initializers, and static initializer

blocks to set the value of a class field.
• Class fields should not be initialized in constructors as they affect the

value in other instances.

Constants and Enumerated Types

• In Java constants can be defined using final class
fields:
public MyClass
{

public final static int MY_CONSTANT_INT = 4;
//Notice our counvetion on constants being all-caps

}
• Java 5 also supports enumerated types:

 public enum SchoolYear {FROSH, SOPHOMORE,
JUNIOR, SENIOR};

for (Rank r : Rank.values())
{ System.out.println(“rank:” + r);}

Singletons
• Some classes are not supposed to have more than one instance at a

time. For example, the top-level window of an application.
• One design pattern using static methods which guarantees this is:

public class Singleton
{

static public Singleton getInstance(){return theInstance;}
protected Singleton() {/* init stuff */}
//… more code
private static Singleton theInstance = new Singleton();

}
To get the one object use: myInstance = Singleton.getInstance();

this reference

• Instance methods operate on a specific
instance of a class.

• This object instance is often referred to as
the receiving instance.

• Inside instance methods this receiving
instance is called by the name this.

