Java Class Definitions

CS151
Chris Pollett
Sept. 19, 20053.

Outline

Creating and Initializing Objects

Access Fields and Methods

Method Invocation and Parameter Passing
Static Fields and Methods

Constants and Enumerated Types

Singletons

Creating and Initializing Objects

* There are four different ways of initializing
a field of a class:
— By an explicit initializer:
public double x=0.0, y=0.0;

— Default initial values - if don’t initialize get
value as described earlier

— Constructor — , ,
— Will describe these

— Initialization Blocks | +wo on next slides

Constructors

Are special methods with the same name as the class.
Their return type can be omitted.
class Point
{
public double x,y;
public Point() { x=0.0; y=0.0;}/* no-arg constructor */
public Point(double init_x, double init_y){x=init_x; y=init_y;}
/* other constructor */
public void move(double dx, double dy){x+=dx; y+=dy;}
¥

To create instances of a class one uses the new operator: Point pl = new
Point(); Point p2=new Point(5.0, 3.0);

If no constructor is given a default empty-bodied one is provided implicitly.
However, is any constructor is given the default one vanishes.

Initialization Blocks

e You can use a statement block within the class declaration to initialize
fields:

class MyClass

1
public int myArray[]= new int[20];

{

for(int 1=0; i< 20; i++)

{
myArray[i] = 1;

¥

e Initialization blocks are executed before any constructor is executed.
e They can be used for code fragments common to all the constructors.

Accessing Fields and Methods

e After an instance has been created fields
and methods can be accessed as follows:

object.method(Parameters)
object.field

* For example,
Point pl=new Point();
double x =pl.x; //access field
pl.move(5.0,2.0); // access method

Method Invocation

The body of a method is simply a block statement.

If the return type of a method is void the return statement in the body
may not return values and you don’t always need a return statement

If the return type is not void all path-ways through the method body
must return a value of the return type. So for instance the following
will give a compile error:

public double product(double x, double y)
{ if (y > 0) return x*y;}
To fix this need to add a return line for the case when y<=0

Note one also has to be careful about: double foo(){ double a; return
a;} since local variables declared in method bodies are not
automatically initialized to their default values.

Parameter Passing

In Java all parameter methods are passed by value. So modifications to
parameters of primitive types inside a method do not affect calling variable
values.

For example:
class C{void inc(int 1){i++;}
C ¢ =new C();
int k =1;
c.inc(k); //k 1s unchanged

For parameters of reference type, state of an object can be affected inside a
method:

class D{void pointlnc(Point p){p.x++; p.y++;}
D d =new D();

Point p = new Point(10.0, 5.0);

d.pointInc(p); // p is now (11.0 ,6.0)

More on Parameter Passing

To achieve a similar result for primitive types as we did for
reference types, one could use a wrapper class:

class IntRef {public int val; public IntRef(int 1){val=1;}}

class E {void inc(IntRef 1){i1.val++;}}

E e = new E();

IntRef k = new IntRef(1);

e.inc(k); // now k.val is 2

These kind of in-out parameters can be useful if we want
to pass and return multiple values from a method.

Class Static Fields and Methods

By default the fields declared in a class are called instance fields.

This means each instance of the class gets a separate copy of these
fields. Modification of field values in one instance will not affect those
values of other instance

In contrast class fields are shared by all instances of a class.
There are also instance methods and class methods.
The keyword static is used to declare class fields and class methods.

Class fields are initialized before any instance of the class is created.
They live until the program ends.

One can use default values, explicit initializers, and static initializer
blocks to set the value of a class field.

Class fields should not be initialized in constructors as they affect the
value in other instances.

Constants and Enumerated Types

* In Java constants can be defined using final class
fields:

public MyClass
1

public final static int MY_CONSTANT_INT = 4;
//Notice our counvetion on constants being all-caps

¥

e Java 5 also supports enumerated types:

public enum SchoolYear {FROSH, SOPHOMORE,
JUNIOR, SENIOR};

for (Rank r : Rank.values())
{ System.out.println(“rank:” + r); }

Singletons

e Some classes are not supposed to have more than one instance at a
time. For example, the top-level window of an application.

* One design pattern using static methods which guarantees this 1s:

public class Singleton

{
static public Singleton getInstance(){return thelnstance;}
protected Singleton() {/* init stuff */}
//... more code
private static Singleton thelnstance = new Singleton();
)

To get the one object use: mylnstance = Singleton.getInstance();

this reference

* Instance methods operate on a specific
instance of a class.

e This object instance 1s often referred to as
the receiving instance.

* Inside instance methods this receiving
instance 1s called by the name this.

