
Design by Abstraction

CS151
Chris Pollett

Oct. 17, 2005.

Outline

• Slightly more on JUnit
• Design Pattern -- Singleton
• Refactoring
• Design Pattern -- Template Method

Slightly more on JUnit
• Last day, we gave the basic format of a JUnit test class and how to compile

and use JUnit.
• Let’s look at an example of a test case

public void testRemove()
{

LinkedList l = new LinkedList();
for(int i = 1; i <= 7; i++)
{

l.insertLast(new Integer(i));
} // creates a list with 1,2,3,4,5,6,7
l.removeHead(); // list now 2,3,4,5,6,7
l.removeLast(); // list now 2,3,4,5,6
l.remove(2); // list now 2,3,5,6
assertTrue(TestUtil.match(l, TestUtil.toIntegerArray(new

int[]{2,3,5,6})); /* code for TestUtil is on page 238 but basically
matches the anonymous array against list contents*/

}

Design Patternss
• The book Design Patterns by [Gamma et al] define a list of common

object oriented designs to solve programming problems which arose
frequently.

• These were classified into three groups: creational patterns, structural
patterns, and behavioral patterns.

• In specifying a pattern as in their book, one needs to give the following
information:
– Pattern name
– Category: Creational, structural, or behavioral
– Intent: a short description of the design issue or problem to be

addressed.
– Also known as: (optional) other names for the pattern
– Applicability: Situations in which the pattern can be applied
– Structure: UML diagram
– Participant: list of classes and or objects involved in the pattern.

• We have already discussed the singleton pattern. Here’s how it might
be described according to the previous slides guidelines.
Design Pattern: Singleton
Category: Creational Design Pattern
Intent: Ensure that a class has only one instance and provide a global

point of access to it.
Applicability: Use the Singleton pattern when there must be exactly

one instance of a class and it must be accessible to clients from a
well-known access point.

Participant: Singleton declares the unique instance of the class as a
static variable, and defines a static method getInstance() for clients
to access the unique instance. (could then give a code fragment)

Design Pattern -- Singleton

Singleton
static getInstance()
operation()
getData()
static Singleton theInstance
data

return theInstance

Designing Generic Components

• A generic component is a set of classes or
packages that can be extended or adapted, and
reused in a variety of contexts.

• Along with using design patterns creating generic
components is an important part of code reuse.

• They are also known as reusable components.
• We now discuss a way of finding generic

components called refactoring.

Refactoring

• This consists of:
– identifying code segments in a program that

implement the same logic, often in the same
exact code in different places (such code is hard
to maintain).

– Capture this logic in a generic component once.
– Restructure the code so that every occurrence

of the code segment uses the generic
component.

Refactoring Method Invocation
• Rewrite:

class A
{

void method1(…){//…
step1(); step2();step3(); //….

}
void method2(…){//…

step1(); step2();step3(); //….
}

 //…
}

• As:
class A
{

void computeAll()
{step1(); step2();step3();}
void method1(…){//…

computeAll();
 //….}

void method2(…){//…
 computeAll();

//….
}

 //…
}

Refactoring by Inheritance

• Might have two classes:
class A
{

void method1(…){//…
step1(); step2();step3(); //….

}
//…
}
class B
{

void method1(…){//…
step1(); step2();step3(); //….

}
//…
}

• Make a common class:
class Common
{

void computeAll(…){
step1(); step2();step3();}

}
class A extends Common
{

void method1(…){//…
computeAll() //….

}
//…
}
class B extends Common
{

void method1(…){//…
computeAll() //….

}
//…
}

Refactoring by Delegation

• Solves same problem as refactoring by
inheritance, except now rather than have A and B
extend Common, A and B each create an instance
of Common c.

class A
{

void method1(…){//…
c.computeAll(); //….

}
//…
}

class B
{

void method1(…){//…
c.computeAll();//….
}

//…
}

Design Pattern -- Template
Method

Category: Behavioral
Intent: To define the skeleton of an algorithm in a method, deferring some steps to

subclasses, thus allowing the subclasses to redefine certain steps of the
algorithm

Applicability: The template method pattern should be used:
– to implement the invariant parts of an algorithm once and leave it to the

subclasses to implement behavior that can vary
– to refactor and localize the common behavior among subclasses to avoid

code duplication
GenericClass

templateMethod()
hookMethod1()
hookMethod2()

…
hookMethod1()
…
hookMethod2()
…

ConcreteClass
hookMethod1()
hookMethod2()

