
Yet More Maze, Yet More
Design Patterns

CS151
Chris Pollett

Nov. 16, 2005.

Outline

• More on Maze Game
• AbstractFactory Pattern
• Factory Method Pattern
• Prototype Pattern

More on Maze Game
• Last day, we said the Maze Game was built out of classes:

– MapSite-- extended by Door, Wall, Room. It is an interface which
supports clone(), enter(Maze m), and draw.

– Room -- has four MapSite’s on it and each MapSite is associated
with 1 or 2 rooms. A Room has a number, and has constants for
ROOM_COLOR and PLAYER_COLOR. It has accessor methods:
getRoomNumber, getLocation, isInRoom. It has mutators:
setRoomNumber, setLocation, setInRoom, setSide(dir, site). The
function enter(Maze m) allows one to set a room as the current
room of the Maze m.

– A Maze has 1 or more Room’s
– SimpleMazeGame is used to drive the whole game

Still more on Maze Game

• Door -- implements MapSite and has methods
isOpen, setOpen, setRooms(r1, r2) getOrientation,
setOrientation, enter(Maze maze) (works if open
otherwise plays a ding sound)

• Wall -- implements MapSite. Trying to enter a
Wall causes a ‘hurts’ sound to be played.

• The SimpleMazeGame has two methods
createMaze() and createLargeMaze. The first
creates a 1x2 maze, the latter a 3x3 maze.

Adding Interest
• We want to make the game more interesting. So we want to support

different themes.
• We will make Harry Potter theme by making a HarryPotterXXX class

where XXX is a subclass of Door, Wall, or Room.
• Similarly, we will make SnowWhiteXXX where XXX is a subclass of

Door, Wall, or Room.
• The theme affects things like what audio clip is played when switching

rooms, the color of a Room, the color of a Walls,etc.
• Now to use these themes we could awkwardly add to

SimpleMazeGame methods createHarryPotterMaze()
createLargeHarryPotterMaze(), createSnowWhiteMaze(),
createLargeSnowWhiteMaze().

• Instead we’ll try to use a different design patterns, such as: abstract
factory, factory method, prototype, and builder.

AbstractFactory Pattern

More on Abstract Factory
• We will create a class MazeFactory (our AbstractFactory) which

supports makeMaze, makeWall, makeRoom, makeDoor.
• We create concrete subclasses HarryPotterMazeFactory and

SnowWhiteMazeFactory, which create concrete Wall, Door, and
Room objects of the given theme.

• Our client, which will be the Maze, only uses the MazeFactory
interface to make Wall’s, Door’s, and Room’s.

• We’ll have a MazeGameAbstractFactory which can build a complete
maze using a supplied MazeFactory’s methods. That is,
MazeGameAbstractFactory will have the two methods:
createMaze(MazeFactory fac) or createLargeMaze(MazeFactory fac)

Factory Method Pattern
• Another way to solve this same problem is to use the Factory Method

pattern that we’ve discussed earlier.
• We could make a class MazeGameCreator which has methods

createMaze, createLargeMaze. makeMaze, makeWall, makeRoom,
makeDoor.

• Then we could subclass this into HarryPotterMazeGameCreator and
only override makeWall, makeDoor, makeRoom.

• Thus, the actual rooms in the Maze are determined by the base class
but how these rooms look is determined by the subclass.

• Similarly, we could create a subclass SnowWhiteMazeGameCreator.
• What theme a game uses then depends on which MazeGameCreator is

used.

Prototype Pattern
• One drawback of the factory patterns is that we need to

subclass both products and factories when we create a new
theme.

• If there are many themes then this can become unflexible.
• Instead, can use a prototype pattern.
• In the pattern, we have an abstract class Prototype (Maze,

Wall, Door) which is Cloneable. Create concrete
subclasses (HarryPotterWall). A Client
(MazeProtoTypeFactory) creates new instances by cloning
the particular concrete prototypes that have been placed on
it.

• MazeGameAbstractFactory sets the prototypes on this
factory then creates the maze.

