
Finish Case Study, More Design
Patterns

CS151
Chris Pollett

Nov. 14, 2005.

Outline

• Iterations 4-6
• Enumeration Types

Iteration 4
• We almost finished talking about Iteration4 before the

midterm.
• One last thing about Iteration 4 is that it makes use of the

creational design pattern known as the Factory method
pattern.

• For instance, the class DrawingPad extends the class
Scribble.

• The class Scribble has a makeCanvas() method used to
make a ScribbleCanvas.

• In DrawingPad, this method is overriden to create a
DrawingCanvas which extends a ScribbleCanvas and has
additional methods for getting and setting the tool.

Factory Methods
Product

ConcreteProduct

Creator

facMethod()
anOperation()

…
Product p=facMethod()

…

ConcreteCreator

facMethod() …
return new ConcreteProduct

Iteration 5

• This iteration adds tools for ovals and
rectangles

• A new subclass of Shape TwoEndsShape is
created and a new tool TwoEndTool is
created which extends Tool to support it.

Iteration 6

• In this iteration another type of Tool called
a KeyboardTool is created with a method
addCharToShape. It is subclassed to make a
TextTool to support text entry is created.

• Similarly, another subclass of Shape called
Text is added.

• The relevant Events and Listener for these
extensions are KeyEvent and KeyListener.

Maze Game

• In Chapter 10 a maze game is developed.
• The board consists of a n x m grid. Each square on

the board is a room.
• Adjacent rooms are separated by either a wall or a

door.
• Doors can be open or closed.
• A player can move around rooms.
• To represent this game it is useful to be able to say

if a door is to be represented horizontally or
vertical and it is useful to be able to say the
directions NORTH, SOUTH, EAST, WEST.

Enumeration Types
• One could spell out these types using:

public interface Orientation
{

public static final int HORIZONTAL = 0;
public static final VERTICAL =1;

}
public interface Direction
{

public static final int NORTH= 0;
public static final int EAST= 1;
public static final SOUTH =2;
public static final int WEST= 0;

}
• However, it is not type safe.

Java 1.5 Enumerated Types

public enum Orientation
{

HORIZONTAL, VERTICAL
}
• This generates a class Orientation with static

variables HORIZONTAL, and VERTICAL.
• This class also has methods values(), valueOf().

For example, can do Orientation o =
Orientation.valueOf(“VERTICAL”);

• Equals, etc are overload appropriately.

How could we do something like
this in Java 1.4?

• The book suggests the following type-safe
enumeration idiom:
public class Orientation
{

public static final Orientation VERTICAL = new
Orientation(“VERTICAL”);

public static final Orientation HORIZONTAL = new
Orientation(“HORIZONTAL”);

public String toString() { return name;}
private Orientation(String name){this.name = name;}
private final String name;

}

Ordered Type-Safe Enumeration

• How can we get a type-safe enumeration where
we have an ordering on the elements of that type.

public class Direction implements Comparable
{

public static final Direction NORTH = new Direction(“North”);
//other directions
//toString,
public int getOrdinal(){ return ordinal;}
public int compareTo(Object o) { if (o instanceof Direction) {return ordinal -

((Direction)o).getOrdinal()}
}
// first, next, opposite,etc

}

More on the Maze Game

• As a first pass of the maze games we have a class
Maze.

• This has on it one or more Room’s.
• A Room is a subclass of a MapSite interface

which supports the methods clone(), enter(Maze
maze), draw.

• Other subclasses include Wall and Door.
• A driver application SimpleMazeGame creates a

maze and all of the objects on it.

