
Still More Java

CS151
Chris Pollett

Sept. 14, 2005.



Outline

• More on reference types
• Arrays
• Statements
• Class Declarations



More on Reference Types
• Creating a variable of primitive type creates a storage location for its

values.
• Declaring a variable of reference type does not create a storage

location for an object or an array. Only a storage location for a
reference is created.

• To create an actual object the new operator (initializer) must be used:
Point p;
p = new Point();
int[] ia;
ia = new int[3];

• An expression like r1==r2 for two reference types checks equality of
references not the equality of the states of the objects. r1.equals(r2)
tries to check for equality of states if it is implemented correctly.



Arrays
• There are two ways to create and initialize one dimensional arrays:

1. With the new operator: new Type[n]
For example: int i[] = new int[20];

2. With the one dimension array initializer: {v1,…, vn}
For example, char c[] = {‘a’, ‘b’, ‘c’};

• Both of these can be generalized to multidimensional arrays. So the
following declarations are legal:

int m[][] = {{1,2,3}, {4,5,6}};
Point a[][][] =new Point[1000][50][345];

• To access an element of array we could do things like
c[1]  (value is ‘b’ above), m[1][2] (value is 6 above)

• arr.length return the length of the array arr for a 1-D array
• Accessing an element beyond the end of an array yields an

IndexOutOfBoundsException



Statements

• There are two major categories of Java
Statements: simple statements and  compound
statements.

• Simple statements include: expression statements,
local variable declarations, break statements,
continue statements, and return statements.

• Compound statements include statement blocks,
selection statements, loop statements, and try-
catch statements. try-catch will be describe on
Monday.



Expressions, Blocks, local
declarations

• Assignment expressions, increment/decrement expressions, object creation,
and method invocation can be made into statements by adding a ‘;’.
For example: x=5; m<<=k; i++; j--;

p = new Point(); p.move(1,2); i= new int[3];
• A statement block consists of a sequence of statements or local variable

declarations within braces:
{

statement1;
statement2;

 …
}

• Local variable declarations terminated by a ‘;’ are also statements. Such
declarations have a scope which is the extent of the code the variable is visible
in. This scope begins at the declaration and ends at the end of the enclosing
block.

For example,

{ int i;/* start i’s scope*/ i=10; int j=10;

…}//end i’s scope



Return and selection
• The return statement terminates the execution of a method and returns

control to its caller. Its syntax is:
return [Expression];
The type of Expression must match the return type of the method that

contains the return statement. Expression are allowed only if the
return type of the method is not void.

• Java has two types of selection statements: if and switch:
if(Condition) Statement
if(Condition) Statement1 else Statement2
switch(Expression) {

case CaseLabel1:  //labels must be constant integer expressions
Statement1 …

    case CaseLabeln: //might use break statement to get passed later cases
Statementn

   default:  //done if no labels apply.
 Statementn+1}



Looping
• There are four kinds of loop statements in Java 5:

while loops, do-while loops, for loops, and for-
each loops

• These have the format:
while(Condition) Statement
do Statement while(Condition);
for(InitExpr; Condition; IncrExpr) Statement
for( Type var : collObj) Statement

• As for-each is new to Java 5, here is an example:
String[] moreNames = { "d", "e", "f" };
for (String name: moreNames)   

System.out.println(name.charAt(0));



Statement Labels, break and
continue

• Each statement can have an optional label, which
is an identifier:
[Statement:] Statement

• Labels can be used in conjunction with break and
continue statements to effect flow of control:
 //my infinite loop

i=0;
outer: while (i < 5)
{ inner: for(int j=0; j <4; j++)
  { if(j == 2) continue outer;

if(i == 1 && j==3) break; //could have written break inner;
System.out.println(“”+(i+j));

  }
  i++;
}



Class Declarations
• Java Classes are the basic compilation units for Java. That is, they are

units that can be compiled individually.
• A class declaration defines a class as well as a reference type.
• The basic syntax of a class declaration is:

[ClassModifiers] class ClassName [extends SuperClass] [implements
Interface1, Interface2,..]

{
ClassMemberDeclarations

}
• ClassModifiers have the following effects: <no modifier> - class is

accessible to all classes within the package, public - accessible by any
class, abstract - class has an abstract method, final - class may not be
extended.

• Each file may contain at most one public class and must end in the
extension .java.



More on Class Declarations

• The extends clause specifies the superclass of a
given class.

• The implements clause lists all the interfaces
implements by the class.

• ClassMemberDeclarations consists of a list of
member declarations. These declarations may be
field, method, or nested class declarations.

• The order of these declaration does not matter to
the compiler but good order ensures readability of
your code.



Still More on Class Declarations
• A method declaration has the syntax:

[MethodModifiers] ReturnType
MethodName([ParameterList]){Statement}

• A field declaration has the syntax:
[FieldModifiers] Type FieldName1 [=Initializer1], FieldName2

[=Initializer2],…;
• Modifiers that can be applied to methods, fields, and inner classes are:

<no modifier> -package accessible, public - any class accessible,
protected -package and subclass, private - only itself, static -shared
by all instances of the class, and final - can’t be overridden.

• Modifiers which apply only to methods are: abstract - means
deferring implementation to a subclass, synchronized - is atomic in a
multithread environment, native - is a method from some other
language.

• Modifiers only used for fields are: volatile - the field might be
changed by nonsynchronized methods, and transient - the field is not
a persistent state of the instances.



Method Declarations
• The return type of a method is required. If the method

doesn’t return a value its return type should be void.
• Parameters in the parameter list have the form:

[final] Type ParameterName
• Final means the parameter cannot be assigned a value in

the method.
• The last element of the parameter list may be of the form

“Type …” For example, void myMethod(String
…args){/**/}. This is called using varargs. It means you
can call myMethod with either a String array or with a
sequence of String arguments. That is,
String myArray[]; /*some stuff*/ myMethod(myArray);
String str1, str2, str3; /* some stuff*/ myMethod(str1, str2, str3);



Style Conventions

• When writing Java, class and interface
names should begin with uppercase letters.
For example, Point.

• Fields and method names should begin with
lower case letters. For example, point.

• Remaining words should be camel cased:
MySuperDuperClass    myNiftyField

someObject


