Canonical Forms, Unit Testing

CS151
Chris Pollett
Oct. 12, 2005.

Outline

e Canonical Forms for Classes

e Unit Testing
e JUnit

Canonical Forms for Classes

e (Classes designed for general use should provide
the following elements:
— A public no-arg constructor.
— Overriden equals() and hashCode() methods
— Overriden toString() methods

— Overriden clone() method. (Need to implement
Cloneable)

— Overriden readObject() and writeObject() if instances
of the class might need to saved or written across a
network.(Implement java.io.Serializable to do this)
e (lasses which provide the above are said to be of
the canonical form for public classes.

No-Argument Constructor

* One useful feature of Java is the ability to
dynamically at runtime load a class with a line

like:
Class t = Class.forName(someString);

e Then create instances of it at runtime with a line
like
t.newlnstance();

e For this to work, we need a no-argument
constructor. So that’s why we have 1t for our
canonical form.

Object Equality

The equals() method defines the equality of object states on a per-class
basis.

The default implementation in Object only tests the equality of
Objects. So ol.equals(02) are equal iff ol and 02 refer to the same
object.

The contract of the equals() method is that all implementations must
satisfy the following conditions:

Reflexivity: x.equals(x) is always true.
Symmetry: x.equals(y) iff y.equals(x)
Transitivety: x.equals(y) and y.equals(z) iff x.equals(z)

Consistency: repeated calls to x.equals(y) should always return the
same answer if the states of x and y are unchanged.

Nonnullity: x.equals(null) should always be false.

Template for equals()

public boolean equals(Object other)
{
if(this==other) return true;
if(other instanceof C)

{
C otherObj=(C)other;

/*compare each field and return false if not equal*/

return true;

¥

return false;
¥
To check fields:
if p 1s of primitive type:
if(p !=otherObj.p) return false;
if r is of reference type:
if(r == null ? otherObj.r != null

: Ir.equals(otherObj.r)) return false;

Hash Code of Objects

The hashCode() method, which return an int, is used by collection
classes that implement hash tables such as HashMap and HashSet,

Overriding the equals() method requires also overriding hashCode().

This 1s because the contract of hashCode() requires if two objects are
equals() they must have the same hash code.

The general way to create a hash code is to create a hash code for each
significant field. (That is, for each field which is checked by the
equals() method).

To implement hashCode(), for each field, if it is of primitive type one
can convert it to an int; otherwise, if it is of reference type and nonnull,
one can call its hashCode() method.

After we have made the hash codes of each of these fields we combine
them by either adding (hash = hash << n | ¢) or OR ing (hash = hash *
p + ¢) them together to get a final integer code.

Cloning Objects

The clone() method returns a copy of the object itself. It is similar to a
C++ copy constructor.

The contract of the clone() method is:

— The cloned object is not the same object as the original object. 1.e.,
o.clone() !=o.

— The cloned object and the original object are of the same class.

— The cloned object must equal the original object. That is,
o.clone().equals(o);

The Object implementation of clone:

— throws a CloneNotSupportedException if the class does not
implement Cloneable

— creates a shallow copy of the original object

A shallow copy means that the values of each field are copied from
then original object to the copy. i.e., reference fields are not
themselves cloned.

If we implement clone() by recursively cloning reference fields when
doing the copying we get a so-called deep copy.

Using Clones in Assertions

e Using the clone() method, we can assert
postconditions involving object in the prestate:
/>X<>X<
@post x.stuff() == x@pre.stuff()+1
*/
vold myMethod()
{

X xpre = x.clone();
//do some code
assert x.stuff() == xpre.stuff()+1;

String Representation of Objects

e The result of the toString() method should include
all fields of the object:

e For example,
public String toString()

{

StringBuffer s = new StringBufter();
int 1 =0;
for(Node node=head; node !=null; node=node.next, 1++)

{

s.append(“[” + 1 + “] =7 +node.element + “\n”);

h

return s.toString();

Serialization

Serialization 1s the process of transforming an
object to a stream of bytes.

Deserialization 1s the reverse process.

Objects of classes that implement
java.io.Serializable can be serialized and
deserialized.

We will talk more about how to code the
readObject() and writeObject() methods of this
interface later in the semester.

Unit Testing

e The testing of software systems 1s split into
phases:

— Unit Testing: Test each component independently
before the units are integrated into the whole system.

— Integration and System Testing: Test the system as a
whole.

— Acceptance testing: Validate that the system functions
and performs as the customer or end-user expects.

Simple Unit Testing

 One can write a simple Test class with a
main() method that creates instances of the
unit to be tested.

* The test performs some operations on these
instances and compares these values against
the expected output.

JUnit

* When dealing with a large and extensive set
of cases the approach described in the
previous slide 1s too clumsy.

It is useful to have a unit testing tool.

e One such tool 1s JUnit which 1s available
from: http://www.junit.org.

A Typical JUnait test program

public class MyTest extends TestCase

{

public MyTest(String name)
{

super(name);

¥

public void testCase_1(){/*test and compare results*/}

public void testCase_1(){/*test and compare results*/}

public static Test suite(){ return new
TestSuite(MyTest.class);

Compiling and running a JUnait
test program

(1) add the path to JUnit.jar file to your
CLASSPATH

(2) javac -source 1.5 MyTest.java
Then do one of:

(1) java -ea junit.textui. TestRunner MyTest (text
version)

(2) java -ea junit. swingui. TestRunner MyTest
(GUI version)

