
Canonical Forms, Unit Testing

CS151
Chris Pollett

Oct. 12, 2005.



Outline

• Canonical Forms for Classes
• Unit Testing
• JUnit



Canonical Forms for Classes

• Classes designed for general use should provide
the following elements:
– A public no-arg constructor.
– Overriden equals() and hashCode() methods
– Overriden toString() methods
– Overriden clone() method. (Need to implement

Cloneable)
– Overriden readObject() and writeObject() if instances

of the class might need to saved or written across a
network.( Implement java.io.Serializable to do this)

• Classes which provide the above are said to be of
the canonical form for public classes.



No-Argument Constructor

• One useful feature of Java is the ability to
dynamically at runtime load a class with a line
like:
Class t = Class.forName(someString);

• Then create instances of it at runtime with a line
like
t.newInstance();

• For this to work, we need a no-argument
constructor. So that’s why we have it for our
canonical form.



Object Equality
• The equals() method defines the equality of object states on a per-class

basis.
• The default implementation in Object only tests the equality of

Objects. So o1.equals(o2) are equal iff o1 and o2 refer to the same
object.

• The contract of the equals() method is that all implementations must
satisfy the following conditions:
– Reflexivity: x.equals(x) is always true.
– Symmetry: x.equals(y) iff y.equals(x)
– Transitivety: x.equals(y) and y.equals(z) iff x.equals(z)
– Consistency: repeated calls to x.equals(y) should always return the

same answer if the states of x and y are unchanged.
– Nonnullity: x.equals(null) should always be false.



Template for equals()
public boolean equals(Object other)
{

if(this==other) return true;
if(other instanceof C)
{

C otherObj=(C)other;
/*compare each field and return false if not equal*/

return true;
}
return false;

}
To check fields:

if p is of primitive type:
if(p !=otherObj.p) return false;

if r is of reference type:
if(r == null ? otherObj.r != null : !r.equals(otherObj.r)) return false;



Hash Code of Objects
• The hashCode() method, which return an int, is used by collection

classes that implement hash tables such as HashMap and HashSet,
• Overriding the equals() method requires also overriding hashCode().
• This is because the contract of hashCode() requires if two objects are

equals() they must have the same hash code.
• The general way to create a hash code is to create a hash code for each

significant field. (That is, for each field which is checked by the
equals() method).

• To implement hashCode(), for each field, if it is of primitive type one
can convert it to an int; otherwise, if it is of reference type and nonnull,
one can call its hashCode() method.

• After we have made the hash codes of each of these fields we combine
them by either adding (hash = hash << n | c) or OR ing (hash = hash *
p + c) them together to get a final integer code.



Cloning Objects
• The clone() method returns  a copy of the object itself. It is similar to a

C++ copy constructor.
• The contract of the clone() method is:

– The cloned object is not the same object as the original object. i.e.,
o.clone() != o.

– The cloned object and the original object are of the same class.
– The cloned object must equal the original object. That is,

o.clone().equals(o);
• The Object implementation of clone:

– throws a CloneNotSupportedException if the class does not
implement Cloneable

– creates a shallow copy of the original object
• A shallow copy means that the values of each field are copied from

then original object to the copy. i.e., reference fields are not
themselves cloned.

• If we implement clone() by recursively cloning reference fields when
doing the copying we get a so-called deep copy.



Using Clones in Assertions

• Using the clone() method, we can assert
postconditions involving object in the  prestate:
  /**

@post  x.stuff() == x@pre.stuff()+1

    */
  void myMethod()
{

X xpre = x.clone();
//do some code
assert x.stuff() == xpre.stuff()+1;

}



String Representation of Objects

• The result of the toString() method should include
all fields of the object:

• For example,
public String toString()
{

StringBuffer s = new StringBuffer();
int i =0;
for(Node node=head; node !=null; node=node.next, i++)
{

s.append(“[” + i + “] =” +node.element + “\n”);
}
return s.toString();

}



Serialization

• Serialization is the process of transforming an
object to a stream of bytes.

• Deserialization is the reverse process.
• Objects of classes that implement

java.io.Serializable can be serialized and
deserialized.

• We will talk more about how to code the
readObject() and writeObject() methods of this
interface later in the semester.



Unit Testing

• The testing of software systems is split into
phases:
– Unit Testing: Test each component independently

before the units are integrated into the whole system.
– Integration and System Testing: Test the system as a

whole.
– Acceptance testing: Validate that the system functions

and performs as the customer or end-user expects.



Simple Unit Testing

• One can write a simple Test class with a
main() method that creates instances of the
unit to be tested.

• The test performs some operations on these
instances and compares these values against
the expected output.



JUnit

• When dealing with a large and extensive set
of cases the approach described in the
previous slide is too clumsy.

• It is useful to have a unit testing tool.
• One such tool is JUnit which is available

from: http://www.junit.org.



A Typical JUnit test program

public class MyTest extends TestCase
{

public MyTest(String name)
{

super(name);
}
public void testCase_1(){/*test and compare results*/}
…
public void testCase_1(){/*test and compare results*/}
public static Test suite(){ return new

TestSuite(MyTest.class);
}



Compiling and running a JUnit
test program

(1) add the path to JUnit.jar file to your
CLASSPATH

(2) javac -source 1.5 MyTest.java
Then do one of:
(1) java -ea junit.textui.TestRunner MyTest (text

version)
(2)  java -ea junit. swingui.TestRunner MyTest

(GUI version)


