
 From Building Blocks to
Projects

CS151
Chris Pollett

Oct. 10, 2005.



Outline

• Design and Implementation of Classes
• Contracts and Invariants
• Design by Contract



Public and Helper Classes
• There are two kinds of classes those for general use

(public classes), and those that are used solely to help
implement other classes (auxiliary or helper classes).

• Usually only the former are declared public.
• Public classes live in a file with the same name. i.e., Point

is defined in Point.java
• A helper class which only helps one public class, say A, in

a package usually is defined in the same file as A. For
example, Node in a LinkedList  implementation of the List
interface.

• If a helper class supports several public classes in a
package it may reside in a file by itself.



Class Members

• The order of the class members does not matter in
Java.

• However, it is good practice to order classes so
other programmers can easily follow your code.

• In particular, for this class we’ll use the order:
public class AClass
{

<public constants (public static final fields)>
<public constructors>
<public accessors -- methods to access, not modify object state>
<public mutators -- methods which modify object state>
<non-public fields>
<non-public auxiliary methods or nested classes>

}



Design Guidelines
• Avoid nonfinal public fields, except when a class is final and the field

value can be set to anything (unconstrained).
– To read an attribute X, use a method getX() (accessor)
– To set the value of an attribute X, use a method setX(value)

(mutator)
• Completeness of the Public Interface

– Make sure your class has a complete set of accessors and mutators,
remembering people might subclass your class in unexpected
ways.

• Separate Interface From Implementation
– If the functionality of a class can be implemented in several

different ways, create an interface first, then implement that.



Documenting Source Code
• Java has a facility called javadoc to make it easy to generate documentation along with

the development of the source code.
• A javadoc comment looks like /** some comment */ (notice the two *’s). It also might

include special tags of the form @some_tag.
• At the command line one can type:

javadoc name_of_java_program.java
and javadoc will strip out these comments and generate a nicely formulated HTML page.

• You should use javadoc comments:
(1) at the start of a class

/**
Description of some class

@author Chris Pollett
@version 2005.10.09
@since JDK 1.0

*/
(2) before each public method.

/**
Description of method
@param variable_name - what variable used for
…
@return - what is return by this method
@throws - some exception thrown by the method
@see - some related method (optional)

*/



Contracts of Methods
• Method declarations in an interface only define the types

of the methods not their behaviors.
• A contract of a method specifies its behavior.
• Contracts are often specified informally or not at all. This

can lead to the following problems:
– Incompleteness or silence on some aspects of behavior
– Ambiguity and multiple interpretations
– Contradictions with other contracts

• A formal contract specification language like Larch, Z, or
VDM can sometimes solve these problems.

• For this class, we will take a simplified approach
specifying contracts with pre- and post-conditions.



More on Contracts

• A precondition is a boolean expression which
must hold when a method is invoked.

• A postcondition is a boolean expression which
must hold when a method returns.

• In a javadoc comment before a method we could
list these conditions with the made up tags @pre
and @post.

/**
@pre precondition_1
…
@pre precondition_n
@post postcondition_1 …

*/



Example
/**

Returns true if and only if the list is empty

@pre true
@post @result <=> size() > 0
@post @nochange

*/
public boolean isEmpty()

• @result means the return value, @nochange means the state of the
object is unchanged by this method. => mean implies, <=> means if
and only if



More Sophisticated Contracts
• When specifying a mutator, one often needs to distinguish between the

values of expression before the method was applied.
• We’ll write this as:

Expression @pre
• To specify contracts involving collections like lists it also useful to be

able to quantify over the elements in the list. We’ll do this with the
notations like:
@forall x: Range @ Expression
@exists x: Range @ Expression
Here Range must be of the form (a) [m..n] to indicate values between

m and n, (b) an expression which evaluates to a Collection,
Enumeration, or Iterator, or (c) a class name.



A More Sophisticated Example

/**
Inserts a new element at the head of the list

@pre item != null
@post size() == size()@pre + 1
@post item@pre == element(0)
@post @forall k : [1 .. size() - 1]

@ element(k-1)@pre == element(k)
*/
public void insertHead(Object item);



Invariants of Classes

• A state of an object is transient if one or more of
its methods are being executed.

• A state of an object is stable if it has been
initialized (by calling one of its constructors), but
none of its methods are currently executing.

• An invariant of a class is a formally specified
condition that always holds on any object of the
class whenever it is in a stable state.

• Given the invariants of a class, an object of the
class is in a well-formed state if the invariants hold
on that state.



Specifying Invariants
• The key characteristics of the doubly linked list representation in the

book can be captured by:
1. If the list is empty, both head and tail must be null.
2. If the list is not empty, the head field points to the first node in

the list, and the tail points to the last node.
3. The count field should equal the number of nodes reachable by

following the next link from the head of the list.
4. For each reachable node, the following two things hold: (a) prev

of next and next of prev point to the current node; (b) prev of the
head and next of tail are null.

• One could write a little function _wellformed() to check these
conditions. Then in our javadoc comment for the whole LinkedList
class we could have the line:
@invariant _wellformed()



Preserving Invariants

• Given a class, for the implementation to preserve
the class’ invariants it must:
– Establish invariants by public constructors -- each

public constructor must imply as a postcondition that
each of the invariants holds

– Preserving invariants by public methods -- each
public method of the class can be assumed to have the
invariants as a precondition, and the invariants must be
implied by postconditions of the method.



Assertions
• An assertion is a boolean condition at a given location of a program which

should be true whenever the flow of execution reaches that location.
• Since JDK 1.4, Java supports assertions with the syntax:

assert Assertion;
• If the Assertion evaluates to false a AssertionError exception is thrown; true

assertions have no effect.
• Assertions can be used to check pre- and post-conditions as well as invariants.
• Assertions on preconditions should be at the start of the method, for

postconditions assertions should be at the return points of the methods and for
invariants there should assertions at both the entry and exit points.

• To compile code with assertion you need to use:
javac -source X.Y filename.java
java -ea filename
where X.Y is 1.4 or 1.5



Example
/**

Returns the first element of the list.

@pre !isEmpty()
@post @result == element(0)

*/
public Object head()
{

assert !isEmpty();
Object result = (head != null ? head.item : null);
assert result == element(0);
return result;

}



Design By Contract

• One would like it to be the case that anytime a
class C  is implemented/extended by some
subclass S. That S can be freely used wherever
something of type C is called.

• To ensure things behave correctly at run-time, we
need for S to honor the contract of C. This is the
idea of designing by contract. Specifically,
– we need that the precondition of each method of S to be

no stronger than the precondition of that method in C.
– we need that the postcondition of each method of S to

be at least as strong as the postcondition of that method
in C.


