
Intoduction To Java

CS151
Chris Pollett
Sept. 7, 2005.

Outline

• Java Platform
• Java Run-Time Architecture
• Getting started with Java

Overview of Java
• Java 1.0 released in 1996.
• The Java Development Kit and Java Runtime Environment has

continued this numbers system.
• After JDK 1.2 came out SUN started using the terminology Java 2

Platform, but the JDK number stayed 1.2.
• Current JDK, JRE should be 1.5, but Sun has decided to number it 5.
• So now we have Java 5 Platform JDK version 5. Ugh!!
• The Java 2 Platform has three editions geared towards different

markets:
– J2EE (Enterprise Edition for servers)
– J2SE (Standard Edition)
– J2ME (Micro edition for handhelds)

• First two use the Java Virtual Machine. Last one, sometimes uses a
stripped down version of this machine (KVM).

J2SE Components

• Java Virtual Machine to execute Java programs
• Development tools including compiler, debugger,

profiler, and documentation generator.
• Core APIs, including language support, logging,

Java Beans, XML processing, and native interface.
• GUI APIs:AWT, Swing, Java2D, JavaSound
• Integration APIs, RMI, CORBA, JDBC, JNDI
• Deployment tools: Java Web Start and Java plug-

in
J2SE is what we’ll focus on in this course.

J2EE Components

J2EE is built on top of J2SE (uses JVM)
• Java Servlets and Java Server Pages
• Enterprise Java Beans
• E-mail and messaging services
• Transaction Management

 J2ME

• For cell-phone, handhelds, set-top boxes.
• Has two configurations depending on how limited

the device is:
– Connected Device Configuration (CDC) - for high end

consumer electronics with megabytes of memory.
– Connected Limited Device Configuration (CLDC)-for

PDAs or Cell-phone, ect with kilobytes of memory.
• J2ME also has various different profiles that one

can choose or choose not to support depending
what particular kind of need your small device
has. Ex: Personal Profile. Mobile Information
Device Profile.

Java Run-Time Architecture

• Java is designed to work on different
machines, to allow for networked
connections, to be secure, and to be
efficient.

• The next several slides will try to indicate
how these goals were achieved.

Execution Models
Java Source Code

Java Compiler

Java Byte Code

byte code
interpreter

CPU

Java Virtual Machine

byte code
interpreter

CPU

Java Virtual Machine

native machine
code

Platform
independent

Platform
dependent

Java Machine

Java chip

Java Virtual Machine

• Java Programs are executed in two stages:
– Stage 1: We compile source code to byte-code.

This byte code is close to machine codes of
many processors.

– Stage 2: Then we execute this byte code
depending on the kind of setting we are in.
(Three routes of previous slide.) Usually, Stage
2 for us will be executed on a JVM using Just
in Time compilation.

Java Byte Code

• These are the instructions which can execute on
the Java Virtual machine.

• These instructions are made up of a 1-byte
opcode, together with 0 or more operands.

• Operands can vary in length, depending on the
opcode.

• The core JVM execute the following loop:
do {
fetch opcode;
fetch operands
execute instruction;
}while(no done);

JVM Execution

Is very much like a 32-bit (RISC) CPU:
• Has a pc (program counter)
• Has an optop register for the top of the operand

stack.
• Has a vars register pointing to the local variables

of the current method
• Has a frame register pointing to the execution

environment structure.
• Has a garbage collected heap to store objects at

run-time.

JVM Instructions Types

• Stack manipulation
• Array management
• Arithmetic and logical operations
• Methods invocation and return
• Exception handling
• Synchronization of thread

Applications and Applets

There are two main types of Java programs:
• applications which are stand-alone and have

full access to system resources.
• applets which are embedded in web pages

and have restricted access to system
resources on the system running the applet.

Security of JVM

• Shielded Memory Addresses -- no way to directly
manipulate memory addresses in Java. No way to
forge a pointer to an address. Memory
de/allocation are done automatically by the JVM.

• Verification of Byte-code: JVM verifies byte code
before it executes it. Looks for improper structures
and control flows in the byte-code, checks for
access-violations, and violations of the type
system.

• Run-time Security Manager - is checked against a
security policy whenever an applet is about to
execute an insecure operation.

Getting Started with Java

• I then showed how to enter and compile a
simple hello world application in java.

• I showed some example applets from
previous. I showed also the code to embed
these applets into web pages, and the source
code for these applets.

Basic Structure of Applets

• Must extend the applet class.
• Should have a paint() method
• Each applet gets a rectangular structure to draw

into
• paint method allows one to draw into this region
• This method is invoked by the applet context

whenever the applet is active and this region
become visible.

