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Overview of Java
• Java 1.0 released in 1996.
• The Java Development Kit and Java Runtime Environment has

continued this numbers system.
•  After JDK 1.2 came out SUN started using the terminology Java 2

Platform, but the JDK number stayed 1.2.
• Current JDK, JRE should be 1.5, but Sun has decided to number it 5.
• So now we have Java 5 Platform JDK version 5. Ugh!!
• The Java 2 Platform has three editions geared towards different

markets:
– J2EE (Enterprise Edition for servers)
– J2SE (Standard Edition)
– J2ME (Micro edition for handhelds)

• First two use the Java Virtual Machine. Last one, sometimes uses a
stripped down version of this machine (KVM).



J2SE Components

• Java Virtual Machine to execute Java programs
• Development tools including compiler, debugger,

profiler, and documentation generator.
• Core APIs, including language support, logging,

Java Beans, XML processing, and native interface.
• GUI APIs:AWT, Swing, Java2D, JavaSound
• Integration APIs, RMI, CORBA, JDBC, JNDI
• Deployment tools: Java Web Start and Java plug-

in
J2SE is what we’ll focus on in this course.



J2EE Components

J2EE is built on top of J2SE (uses JVM)
• Java Servlets and Java Server Pages
• Enterprise Java Beans
• E-mail and messaging services
• Transaction Management



 J2ME

• For cell-phone, handhelds, set-top boxes.
• Has two configurations depending on how limited

the device is:
– Connected Device Configuration (CDC) - for high end

consumer electronics with megabytes of memory.
– Connected Limited Device Configuration (CLDC)-for

PDAs or Cell-phone, ect with kilobytes of memory.
• J2ME also has various different profiles that one

can choose or choose not to support depending
what particular kind of need your small device
has. Ex: Personal Profile. Mobile Information
Device Profile.



Java Run-Time Architecture

• Java is designed to work on different
machines, to allow for networked
connections, to be secure, and to be
efficient.

• The next several slides will try to indicate
how these goals were achieved.
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Java Virtual Machine

• Java Programs are executed in two stages:
– Stage 1: We compile source code to byte-code.

This byte code is close to machine codes of
many processors.

– Stage 2: Then we execute this byte code
depending on the kind of setting we are in.
(Three routes of previous slide.) Usually, Stage
2 for us will be executed on a JVM using Just
in Time compilation.



Java Byte Code

• These are the instructions which can execute on
the Java Virtual machine.

• These instructions are made up of a 1-byte
opcode, together with 0 or more operands.

• Operands can vary in length, depending on the
opcode.

• The core JVM execute the following loop:
do {
fetch opcode;
fetch operands
execute instruction;
}while(no done);



JVM Execution

Is very much like a 32-bit (RISC) CPU:
• Has a pc (program counter)
• Has an optop register for the top of the operand

stack.
• Has a vars register pointing to the local variables

of the current method
• Has a frame register pointing to the execution

environment structure.
• Has a garbage collected heap to store objects at

run-time.



JVM Instructions Types

• Stack manipulation
• Array management
• Arithmetic and logical operations
• Methods invocation and return
• Exception handling
• Synchronization of thread



Applications and Applets

There are two main types of Java programs:
• applications which are stand-alone and have

full access to system resources.
• applets which are embedded in web pages

and have restricted access to system
resources on the system running the applet.



Security of JVM

• Shielded Memory Addresses -- no way to directly
manipulate memory addresses in Java. No way to
forge a pointer to an address. Memory
de/allocation are done automatically by the JVM.

• Verification of Byte-code: JVM verifies byte code
before it executes it. Looks for improper structures
and control flows in the byte-code, checks for
access-violations, and violations of the type
system.

• Run-time Security Manager - is checked against a
security policy whenever an applet is about to
execute an insecure operation.



Getting Started with Java

• I then showed how to enter and compile a
simple hello world application in java.

• I showed some example applets from
previous. I showed also the code to embed
these applets into web pages, and the source
code for these applets.



Basic Structure of Applets

• Must extend the applet class.
• Should have a paint() method
• Each applet gets a rectangular structure to draw

into
• paint method allows one to draw into this region
• This method is invoked by the applet context

whenever the applet is active and this region
become visible.


