
Sockets and RMI

CS151
Chris Pollett
Dec. 5, 2005.

Outline

• Echo Server with Multiple Clients
• Client pull/Server push
• Remote Method Invocation
• Proxy Pattern

Echo Server with Multiple
Clients

public class MultiEchoServer
{

public static void main(String[] args)
{

try
{

ServerScocket s= new ServerSocket(8009);
while(true){Socket incoming = s.accept();

new ClientHandler(incoming).start();}
}
catch(Exception e){}

}
}

ClientHandlerimport java.io.*;
import java.net.*;
public class ClientHandler extends Thread
{

 protected Socket incoming;
public ClientHandler(Socket incoming)

{this.incoming =incoming;}
public void run()
{

try
{

BufferedReader in = new BufferedReader(new
InputStreamReader(incoming.getInputStream()));

PrintWriter out = new PrintWriter(new OutputStreamWriter(incoming.getOutputStream()));
out.println(“MultiEchoServer: Type bye to quit”);
out.flush();
while(true)
{
 String in.readLine();
 if(str==null) {break;}
 else{out.println(“echo:”+ str); out.flush(); if(str.trim().equals(“bye”) break;}
}
incoming.close();

}
catch(Exception e){e.printStackTrace();}

}
}

EchoClient
import java.io.*;
import java.net.*;
public class EchoClient
{

public static void main(String[] args)
{

try
{
 if(args.length >0) host =args[0];
 else host =“localhost”;
 Socket socket= new Socket(host, 8009);

 BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
 PrintWriter out = new PrintWriter(new OutputStreamWriter(socket.getOutputStream()));

 out.println(“bye”); out.flush();
 for(int i=1; i <= 10; i++)

 { System.out.println(“Sending: line ” + i); out.println(“line” +i); out.flush();}
 while(true){String str =in.readline(); if(str==null) break; else System.out.println(str);}
}
catch(Exception e){e.printStackTrace();}

}
}

Connections from Applets

• The book gives an example of an applet making a
connection back to a server on the machine it
came from.

• This server maintains a counter for the page the
applet lives on.

• The relevant code to do to make such a connection
is:
URL url = getDocumentBase();
Socket t = new Socket(url.getHost(), port);

Broadcast Echo Server
• The book gives an example of clients communicating with each other

through a server.
• The server consists of the class BroadcastEchoServer which spawns

BroadcastClientHandler threads in a similar fashion as was done in the
MultiEchoServer.

• This time the server keeps track of all the handlers in a HashSet
activeClients. It also passes into the constructor of the handlers an
integer ID.

• The BroadcastClientHandler has a synchronized method sendMessage
which write a message to its socket’s output stream.

• Now when a handler receives a string from the client, the handler,
iterates through activeClients and calls the sendMessage method of
each handler with the message it just got.

Client pull/Server Push

• There are two strategies for handling real
time updates over a network:
– client pull: the client periodically contacts the

server to receive current information
– server push: the server notifies clients

whenever a value has changed.
• The book gives implementations of a real

time stock quote ticker in terms of both set-
ups.

Remote Method Invocation
• Java Remote Method Invocation is a simplified mechanism for objects

to communicate with each other over the web.
• It is a stripped down version of a programming language non-specific

protocol known as CORBA.
• The key participants in the RMI architecture are:

– The Server: -- an object that provides services to objects residing
on remote hosts

– Service Contract: -- An interface that defines the services provided
by the server

– Client: -- an object that uses the services provided by the server
– Stub: -- an object that resides on the same host as the client and

serves as a proxy for the remote server
– Skeleton: -- an object that resides on the same host as the server

and serves as a proxy for the client.

Using RMI
0. Get the rmi registry running on the server.: rmiregistry&
1. Define an interface for the remote object.

public interface Contract extends Remote
{//Remote is in java.rmi

public void method1(…) throws
RemoteException;

//other methods
}

2. Implement the contract in some class on the server:
public class ServiceProvider extends UnicastRemoteObject

implements Contract {/*code*/}

More Using RMI
3. Create an instance of the server and register that server to the RMI registry:

Contract server = new ServiceProvider(..);
Naming.rebind(name, server);

4. Generate the stub and skeleton classes, using the rmi compiler:
rmic ServiceProvider
This generates two files ServiceProvider_stub.class and

ServiceProvider_Skel.class. The former should be on the client
machine the latter on the server. These class files actually handle the
communication over the internet.

5. Develop a client that uses the services provided by the Contract interface:
Remote remoteObj = Naming.lookup(name);
 /*looking up rmi names is done with a URL like rmi://host:port/name where

name is the name of the service on the server */
Contract serverObj = (Contract)remoteObj;
…
serverObj.method1(..);

Proxy Pattern

RMI uses something called the proxy pattern:

In RMI the Subject above is the Contract interface,
the RealObj is the ServiceProvider and the proxy
is the ServiceProvider_Stub.

Client Subject

RealObj Proxy

