
 Overriding, Hiding, and Applets

CS151
Chris Pollett
Oct. 5, 2005.

Outline

• Overriding Methods
• Subtypes for Interfaces
• Single versus Multiple Inheritance
• Hiding Fields and Class Methods
• More on Applets

Overriding Methods

• Overriding is the introduction of an instance
method (i.e., non-static method) in a subclass that
has the same name, signature, and return type of a
method in the superclass.

• The implementation in the subclass replaces the
method in the parent class.

• This differs from overloading where one has
methods with the same name in the same class
with different signatures.

• Here we are talking about subclasses with a
method with both the same name and signature as
the parent class.

Example Overriding/Not
Overriding

class B { public void m(){…}}
class C extends B {public void m(){…}}
//Above is an example of overriding

class B { public void m(){…}}
class C extends B {public void m(int a){…}}
/* Might think above is overloading. Not legal in

Java; legal in C++ (if modified to C++ syntax)*/

Final Methods

• A method that is declared final in a parent class
cannot be overriden in a subclass.

• This is done to prevent people from overriding
methods by accident that should not be overriden.

• You might want to prevent someone from
overriding a method that has to work with other
classes in a delicate way. (i.e., the method has to
honor some convention or contract.)

• Another reason to use a final method is that it
allows the JVM to better optimize your code
sometimes.

Invoking Overriden Methods
• Suppose I define a subclass of Point called ColoredPoint. I

want two ColoredPoint’s to be equal if they are equal as
Point’s and they have the same Color. So it would be
useful to call Point’s equals() method when defining
ColoredPoint’s equals() method.

• To do this one can define in ColoredPoint:
public boolean equals(Object other)
{

if (other == null || !(other instanceof ColoredPoint))
return false;

ColoredPoint p = (ColoredPoint)other;
return (super.equals(p) && color.equals(p.color));

}

Restrictions in Java
• Sometimes when we create a subclass of a parent class we

want to “forget” some of the methods of the parent class.
• The subclass in this case is called a restriction of the

parent class.
• For example, you might have a class Polygon and you

might want to create a subclass Rectangle which does not
support the addVertex method.

• To do this in Java you could either override addVertex in
one of two ways:
(1) public void addVertex(Point p){} //i.e., make it do nothing
(2) public void addVertex(point p) throws MethodNotSupported

{throw new MethodNotSupported(“addVertex”);} // give an exception

Subtypes for Interfaces
• Interfaces also define types.
• Both extension and implementation are subtypes in this case.
• A complete definition of the subtype relation can now be given:

– if C2 extends C1 then C2 is a subtype of C1
– if I2 extends I1 then I2 is a subtype of I1.
– if C implements I, then C is a subtype of I.
– Every interface I is a subtype of Object (will also hold for classes

by previous)
– For every type T, T[] where T is a primitive or reference type, T is

a subtype of Object.

– If T1 is a subtype of T2, then T1[] is a subtype of T2[].

Single versus Multiple
Inheritance

• One use of interfaces is to allow a class to implement multiple roles.
• For instance, one might have an interface Student which is

implemented by having a getGPA() method and an interface Employee
which is implement by having a getSalary() method. Then a class
StudentEmployee could implement both these interfaces.

• This is an example of multiple inheritance.
• Unlike C++, Java only supports multiple inheritances for interfaces.
• An example headache caused by true multiple inheritances, is if have a

diamond shape multiple inheritance relationship. For example, both
Employee and Student might be derived from Person which has a
name field. Then StudentEmployee might end up with two name
fields, one via Employee and one via Student. So your computer
language needs a mechanism to resolve this issue.

Faking True Multiple Inheritance
in Java.

• Can use delegation:
public class EmployeeImpl implements Employee

{public float getSalary(){/*code for salary */}}
public class StudentImpl implements Student

{public float getGPA(){/*code for salary */}}
public class StudentEmployee implements Student,Employee

{
public StudentEmployee()
{studentImpl = new StudentImpl();
 employeeImpl = new EmployeeImpl();
}
public float getGPA() {return studentImpl.getGPA();}
public float getSalary() {return employeeImpl.getSalary();}
protected StudentImpl studentImpl;
protected EmployeeImpl employeeImpl;

}

Name Collisions among
Interfaces

Suppose class A implements X, Y and there is a
methods m() in both interface X and interface Y.

• If the two m()’s have different signatures they are
considered to be overloaded.

• If they have the same signatures and return type,
they are considered to be the same method.

• If they have the same signature but different return
types a compile error will occur.

• If they have the same signature and return types
but different throws lists, then the union of the
exceptions listed is assumed.

Marker Interfaces

• Marker interfaces are empty interfaces that
declare no methods or constants.

• They are used to mark that a class has some
set of properties.

• For instance, the Cloneable interface is used
to indicate a class whose objects can be
cloned.

Hiding Fields and Class Methods

• Hiding refers to the introduction of a field or a
class method in a subclass with the same name as
a field or a class method in a parent class.

• For example, suppose Point has a static method
getDescription() which is hidden by ColoredPoint.

• Then:
ColoredPoint p = new ColoredPoint(10, 0, Color.blue);
System.out.println(p.getDescription()); /* calls child

method*/
Point p2 = p;
System.out.println(p2.getDescription()); /* calls parent

method. Note: this is determined at compile time!*/

More on Applets
• An idiom is a common object-oriented coding pattern which is specific to some

programming language.
• For example, one might have a Java class that run as both an applet and application:

public MyClass extends JApplet
{ public void init() {/* do stuff */}
 public void paint(Graphics g){/* do stuff */}

public static void main(String args[])
{

MyClass myApplet = new MyClass(); // could write own constructor
JFrame myFrame = new JFrame(“MyFrame”);

Container c = myFrame.getContentPane();

c.add(myApplet);

myFrame. setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

myFrame.setSize(100,100); myFrame.setLocation(100,100);

myApplet.init();

myFrame.setVisible(true);

myApplet.start();

}
}

Still More on Applets
• Reading values from param tags

Between <applet …> and </applet> (or <object..>) we can have:
<param name=“some name” value=“some value”> tags. Within our applet

we can find out these values using getParameter(“some name”);
• Drawing String in paint

public void paint(Graphics g)
{

Font font = new Font(“Sans-serif”,Font.BOLD, 24);
g.setFont(font);
String text=“hello”;
FontMetrics fm = g.getFontMetrics();
int length = fm.stringWidth(text);
//use length to figure out x,y of where to draw then
g.drawString(text,x,y);

}
• Methods java.awt.Graphics class has many other useful methods:

fillRect(),drawRect(),drawOval, fillOval, drawLine, etc see online docs.

Reading files in Applets

• An applet is not allowed to read or write files on
the client machine.

• It is allowed to read files from the server host.
• For instance, can do:

URL url = new URL(getDocumentBase(), filename);
BufferedReader in = new BufferedReader(new

InputStreamReader(url.openStream()));
To read from such a file. In our homework the file will be

a Jar so want to use JarInputStream or
JarURLConnection.

