
 Classes and Inheritance

CS151
Chris Pollett
Oct. 3, 2005.

Outline

• Overloading Methods and Constructors
• Extending Classes

Overloading Methods and
Constructors

• Overloading is the ability to allow different
methods or constructors of a class to share the
same name. The name is said to be overloaded.

• Two methods or constructors in the same class can
be overloaded, if: (1) they share the same name,
but have either a different number of parameters,
or (2) the name number of parameters but with
different types. For example: Point might have
two methods multiply():
public void multiply(Point p){/*code */}
and
public void multiply(double scalar){/* code */}

More on Overloading

• Some languages support operator overloading. For
instance, +=, -=, etc in C++ can be overriden.

• One advantage of this is that it can make the code
more succinct; one disadvantage is that operators
can be overloaded in misleading ways.

• In general, one should only overload if one of the
following applies:
– there is a general similarity in functionality which is

being provided by all the overloaded functions
– some of the methods will supply default arguments for

a common more general method.

Extending Classes

• Inheritance defines a relationship among classes.
• When C2 inherits or extends from C1, class C2 is

called a subclass of C1 and C1 is called a
superclass of C2.

• All public and protected methods of C1 will be
accessible in C2.

• Interface extension and implementation can also
be viewed as a weak kind of inheritance.

• The extension relation among classes forms a
hierarchy with the class Object as its root. Every
class other than Object has a unique superclass.

Constructors of Extended Classes
• Initialization of an extended class consists of two phases: (1) Initialization of the parent

class. (2) Initialization of the fields of the current class.
• One of the constructors of the parent class must be called to initialize the fields of the

parent:
class MySubclass extends MyClass
{

public int mySubInt;
public MySubclass(int xParent, xSub)
{

super(xParent);
mySubInt = xSub;
// do other stuff.

}
public MySubclass()
{ mySubInt =0; // no-arg constructor of parent implicitly invoked
}

}

Order of Initialization

• The fields of the superclass are initialized, using
explicit initializaers or default values

• One of the constructors of the superclass is
executed

• The fields of the extended class are initialized
using field initializers or default values

• One of the constructors of the child class is
executed.

Subtypes and polymorphism

• One important characteristic of OO-programming
is the dynamic binding of methods.

• The idea is we have several subclasses of some
parent and each implementing some method
differently.

• When we use instances, the code that actually gets
called can be determined at run-time rather than
compile time.

• To use this idea we need to say when one type
(primitive like an int or defined like a class) can
be substituted for another.

Subtypes

• Type T1 is a subtype of T2 if very legitimate value
of T1 is a legitimate value of T2. T2 is called a
supertype of T1.

• Subtypes have the property that wherever a value
of a supertype is expected a value of a subtype can
be used.

• The conversion of a subtype to its supertype is
called widening. The reverse is called narrowing.

Polymorphic Assignment
• Consider:

class Student {}
class Graduate extends Student{}
class Undergrad extends Student{}

• Then the following is legal
Student s = new Graduate();//different subtypes of Student
Student s = new Undergrad ();//are legal on RHS (polymorphism)
But the following is not:
Graduate g =new Student(); /*you could try an explicit cast

(Graduate)(new Student()) but this might break elsewhere */
• The basic rule is that the right hand of assignment must be a subtype of

the left hand side.

Subtyping and Arrays

• The following is legal:
Student as[];
//code
Student g = new Graduate();
as[1] = g;
Now suppose did :
Graduate g2 = as[1]; /* would get a compilation error*/
Need to explicitly cast event though we know as[1] was

originally a Graduate.
Graduate g2 = (Graduate)as[1];

