Classes and Inheritance

CS151
Chris Pollett
Oct. 3, 2005.



Outline

e Overloading Methods and Constructors

* Extending Classes



Overloading Methods and
Constructors

* Overloading 1s the ability to allow different
methods or constructors of a class to share the
same name. The name 1s said to be overloaded.

 Two methods or constructors 1n the same class can
be overloaded, if: (1) they share the same name,
but have either a different number of parameters,
or (2) the name number of parameters but with
different types. For example: Point might have
two methods multiply():

public void multiply(Point p){/*code */}
and
public void multiply(double scalar){/* code */}



More on Overloading

* Some languages support operator overloading. For
Instance, +=, -=, etc in C++ can be overriden.

* One advantage of this 1s that it can make the code
more succinct; one disadvantage 1s that operators
can be overloaded in misleading ways.

* In general, one should only overload if one of the
following applies:

— there 1s a general similarity in functionality which 1s
being provided by all the overloaded functions

— some of the methods will supply default arguments for
a common more general method.



Extending Classes

Inheritance defines a relationship among classes.

When C2 inherits or extends from C1, class C2 1s

called a subclass of C1 and C1 1s called a
superclass of C2.

All public and protected methods of C1 will be
accessible in C2.

Interface extension and implementation can also
be viewed as a weak kind of inheritance.

The extension relation among classes forms a
hierarchy with the class Object as its root. Every
class other than Object has a unique superclass.



Constructors of Extended Classes

e Initialization of an extended class consists of two phases: (1) Initialization of the parent
class. (2) Initialization of the fields of the current class.

e One of the constructors of the parent class must be called to initialize the fields of the
parent:

class MySubclass extends MyClass
{
public int mySublnt;
public MySubclass(int xParent, xSub)
{
super(xParent);
mySublnt = xSub;
// do other stuff.
}
public MySubclass()
{ mySublnt =0; // no-arg constructor of parent implicitly invoked

h



Order of Initialization

The fields of the superclass are initialized, using
explicit initializaers or default values

One of the constructors of the superclass 1s
executed

The fields of the extended class are 1nitialized
using field initializers or default values

One of the constructors of the child class i1s
executed.



Subtypes and polymorphism

One important characteristic of OO-programming
1s the dynamic binding of methods.

The 1dea 1s we have several subclasses of some
parent and each implementing some method
differently.

When we use instances, the code that actually gets
called can be determined at run-time rather than
compile time.

To use this idea we need to say when one type
(primitive like an int or defined like a class) can
be substituted for another.



Subtypes

e Type T1 is a subtype of T2 if very legitimate value
of T1 1s a legitimate value of T2. T2 is called a
supertype of T1.

* Subtypes have the property that wherever a value
of a supertype 1s expected a value of a subtype can
be used.

e The conversion of a subtype to its supertype is
called widening. The reverse 1s called narrowing.



Polymorphic Assignment

Consider:
class Student {}
class Graduate extends Student{}
class Undergrad extends Student{}

Then the following is legal
Student s = new Graduate();//different subtypes of Student
Student s = new Undergrad ();//are legal on RHS (polymorphism)
But the following is not:

Graduate g =new Student(); /*you could try an explicit cast
(Graduate)(new Student()) but this might break elsewhere */

The basic rule is that the right hand of assignment must be a subtype of
the left hand side.



Subtyping and Arrays

e The following is legal:
Student as[];
//code
Student g = new Graduate();
as[1] = g;
Now suppose did :
Graduate g2 = as[1]; /* would get a compilation error™/

Need to explicitly cast event though we know as[1] was
originally a Graduate.

Graduate g2 = (Graduate)as[1];



