
I/O Framework and Case Study

CS151
Chris Pollett
Nov. 2, 2005.

Outline

• Character Streams
• Random Access Files
• Design case study

– Planning
– Iterations

Character Streams
• Java internally represents strings as Unicode which uses two

bytes/char.
• Externally, text files are stored in a variety of different formats

depending on the machine’s locale.
• Here a locale means a geographic region which generally shares the

same language.
• The default locale here in California is ISO-8859-1. Also known as

ASCII.
• Character based I/O streams perform conversions between Unicode

and locale characters when reading and writing strings.
• This is in contrast to the byte streams we talked about last day which

are not locale sensitive.

More on Character Streams
• Two abstract classes Reader and Writer are at the root of the

inheritance hierarchy for character-based I/O.
• Reader -- supports read(), read(ca), read(ca,off,len), close()
• Writer -- supports write(c), write(ca), write(ca,off,len), close()
• InputStreamReader and OutputStreamReader are two filter that serve

as a bridge to make a stream into a reader:
Ex: InputStreamReader isr =new InputStreamReader(new

FileInputStream(“hi.txt”));
/* another constructor takes a stream and an encoding name*/

• Other Reader’s include FileReader and BufferedReader
• Other Writer’s include FileWriter, BufferedWriter,and PrintWriter.

The last supports print and println which are very useful.

Random Access Files
• Random access files support both reading and writing data at any

position in a file.
• The Java class that encapsulates this ability is RandomAccessFile.
• The constructor is RandomAccessFile(filename, mode) where mode is

a string “r” (for read-only), “rw” (read-write), “rws”, or “rwd” (rw
with force-writing).

• This class implements DataInput and DataOutput as well as supports
the methods:
– seek(l) to move to the lth byte from the start of the file
– skipBytes(i) to move forward or backward with the file i bytes

(backward if negative).

Design case study

• Chapter 9 in the book consists of an
extensive case study of a drawing pad
programming.

• This study illustrates the iterative
development process so we will go through
it in some detail.

Planning

• It is decided in the planning phase that the
program will use Swing rather than AWT.

• The following requirements were decided upon.
The drawing tool should support:
– Scribbling and drawing various shapes
– Saving drawings to files and loading the drawings from

files
– Typing from the keyboard
– Choosing fonts and colors

Iterations
• The plan to develop this project is divided into six iterations, each of

which adds functionalities to the previous iteration.
• The iterations make heavy use of design patterns to keep the code

flexible enough to make it easy to go from one iteration to the next.
• The iterations are:

1. Create a simple scribble pad, consisting of only a canvas for
scribbling

2. Add support for saving, loading, a menu bar, and dialogs.
3. Refactor to support various tools for different shapes.
4. Add tools for lines, rectangles, and ovals.
5. Refactor and tools for filled versions of (4).
6. Add tools for drawing text.

Iteration 1

• The application class for this iteration is
Scribble.

• This extends JFrame and has on it a
ScribbleCanvas which extends JPanel.

• The ScribbleCanvas has a
ScribbleCanvasListener on it that
implements MouseListener and
MouseMotionListerner.

ScribbleCanvas
• Has fields mouseButtonDown (boolean); x, y -- the

location of the mouse in the canvas; and listener -- for the
ScribbleCanvasListener.

• MouseListener needs: mousePressed, mouseReleased,
mouseEntered, mouseExited, mouseClicked implemented.

• MouseMotionListener needs: mouseDragged and
mouseMoved.

• ScribbleCanvasListener gives blank implementations to all
but mousePressed, mouseReleased, and mouseDragged.

• The desired behavior for scribbling is: a stroke begins
when a mouse button is pressed, it continues when the
mouse is dragged, and it ends when the mouse is released.

Example ScribbleCanvasListener
Methods

public void mousePressed(MouseEvent e)
{

Point p = e.getPoint();
canvas.mouseButtonDown = true;
canvas.x =p.x;
canvas.y =p.y;

}
public void mouseReleased(MouseEvent e)
{

canvas.mouseButtonDown = false;
}
public void mouseDragged(MouseEvent e)
{

Point p =e.getPoint();
if(canvas.mouseButtonDown)
{

canvas.getGraphics().drawline(canvas.x, canvas.y, p.x, p.y); canvas.x =p.x; canvas.y=p.y;
}

}

Iteration 2

• For this iteration we need:
– to be able to store drawings so that they can be

redrawn
– to be able to save the drawing into files and

load them
– build a menu bar
– use file dialogs
– create a dialog box for selecting colors

Strokes

• The original draw program draws strokes to the
screen but does not store them internally.

• In this iteration, ScribbleCanvas has a ArrayList
of Stroke objects on it called strokes. It also keeps
track of a curStroke and a curColor.

• A Stroke has an ArrayList of Point’s called points
and a color.

• A Stroke supports the methods setColor(),
getColor(), addPoint(), getPoints()

New ScribbleCanvas
• To the original ScribbleCanvas the following

methods are added:
– setCurColor()
– getCurColor()
– startStroke() --invoked by the listener when a stroke is

started (calls Stroke constructor)
– addPointToStroke() -- invoked by the listener to append

a point to the current stroke
– endStroke() -- adds the current stroke to the list of

Stroke’s
– paint() -- drawing is repainted onto canvas based on

strokes stored internally
– newFile() , saveFile(), openFile() -- are for

saving/loading

Scribble Constructor/ Menubar
public Scribble()
{

setTitle(“Scribble Pad”);
canvas = new ScribbleCanvas();
getContentPane().setLayout(new BorderLayout);
getContentPane().add(createMenuBar(), BorderLayout.NORTH);
getContentPane().add(canvas, BorderLayout.CENTER);
//… rest of constructor

}
protected JMenuBar createMenuBar()
{

JMenuBar menuBar = new JMenuBar();
JMenu menu = new JMenu(“File”);
JMenuItem mi = new JMenuItem(“New”);
menuBar.add(menu);
menu.add(mi);
mi.addActionListener(new NewFileListener()); //…rest of method

}

NewFileListener
class NewFileListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

newFile();
}

}

